12th International Symposium on Process Systems Engineering

&

25th European Symposium on Computer Aided Process Engineering
This page intentionally left blank
COMPUTER-AIDED CHEMICAL ENGINEERING, 37

12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING

PART A

Edited by

Krist V. Gernaey, Jakob K. Huusom and Rafiqul Gani

Department of Chemical and Biochemical Engineering
Technical University of Denmark
DK-2800 Lyngby, Denmark
Contents

Preface  xix
Committees  xxi
Local Organising Committee  xxv
Sponsors  xxvii

Plenary Papers
Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty
Ignacio E. Grossmann, Robert M. Apap, Bruno A. Calfia, Pablo Garcia-Herreros, Qi Zhang  1

A multidisciplinary hierarchical framework for the design of consumer centered chemical products
Ka M. Ng  15

Multi-Level design of process systems for efficient chemicals production and energy conversion
Kai Sundmacher  25

Keynote Papers
PSE tools for process intensification
Philip Lutze  35

Towards the integration of process design, control and scheduling: Are we getting closer?
Efstratios N. Pistikopoulos, Nikolaos A. Diangelakis, Amit M. Manthanwar  41

Industrially applied PSE for problem solving excellence
Antoon J. B. ten Kate  49

Sustainable production of liquid fuels
Jonathan P. Raftery, M. N. Karim  55

Industrial perspectives on the deployment of scheduling solutions
Iiro Harjunkoski  63

Overview of smart factory studies in petrochemical industry
Defang Li, Baihua Jiang, Hansheng Suo, Ya Guo  71

A PSE approach to patient-individualized physiologically-based pharmacokinetic modeling
Roberto Andrea Abbiati, Gaetano Lamberti, Anna Angela Barba, Mario Grassi, Davide Manca  77

Modeling and optimization of continuous pharmaceutical manufacturing processes
Amanda Rogers, Marianne Ierapetritou  85
Process technology licensing: An interface of engineering and business
Andreas Bode, Jose Castro-Arce, Bernd Heida, Carsten Henschel, Achim Wechsung, Justyna Wojcicka 93

Simple rules for economic plantwide control
Vladimiro Minasidis, Sigurd Skogstad, Nitin Kaistha 101

Mixed-Integer fractional programming: Models, algorithms, and applications in process operations, energy systems, and sustainability
Fengqi You 109

Advances and challenges in modelling of processing of lipids
Bent Sarup 117

A perspective on PSE in fermentation process development and operation
Krist V. Gernaey 123

Sustainable production and consumption: A decision-support framework integrating environmental, economic and social sustainability
Adisa Azapagic 131

Control of reaction systems via rate estimation and feedback linearization
Diogo Rodrigues, Julien Billeter, Dominique Bonvin 137

Modeling the fixed-bed Fischer-Tropsch reactor in different reaction media
Rehan Hussain, Jan H. Blank, Nimir O. Elbashir 143

Contributed Papers

T-0: PSE-CAPE and Education

Process simulators: What students forget when using them, their limitations, and when not to use them
Joseph A. Shaeiwitz, Richard Turton 149

Learning to solve mass balance problems through a web-based simulation environment
Alexandros Koulouris, Dimitrios Vardalis 155

Model predictive control of post-combustion CO2 capture process integrated with a power plant
Evgenia D. Mehleri, Niall Mac Dowell, Nina F. Thornhill 161

A framework to structure operational documents for chemical processes
Hiroshi Osaka, Yuji Naka, Tetsuo Fuchino 167

Teaching sustainable process design using 12 systematic computer-aided tasks
Deenesh K. Babi 173
**Contributed Papers**

**T-1: Modelling, Numerical Analysis and Simulation**

Optimization of chemical processes using surrogate models based on a kriging interpolation  
*Natalia Quirante, Juan Javaloyes, Rubén Ruiz-Femenia, José A. Caballero*  
179

Global sensitivity analysis for a model of B-Cell chronic lymphocytic leukemia disease trajectories  
*Symeon Savvopoulos, Ruth Misener, Nicki Panoskaltsis, Efstratios N. Pistikopoulos, Athanasios Mantalaris*  
185

Modelling and simulation of complex nonlinear dynamic processes using data-based models: application to photo-fenton process  
*Ahmed Shokry, Francesca Audino, Patricia Vicente, Gerard Escudero, Montserrat Perez Moya, Moises Graells, Antonio Espuña*  
191

A meshfree maximum entropy method for the solution of the population balance equation  
*Menwer Attarakih, Abdelmalek Hasseine, Hans-Jörg Bart*  
197

Modelling the hydrodynamics of bubble columns using coupled OPOSPM-maximum entropy method  
*Menwer Attarakih, Ferdaous Al-Slaihat, Mark W. Hlawitschkac, Hans-Jörg Bart*  
203

Process simulation of a 420MW gas-fired power plant using Aspen Plus  
*Bao-Hong Li, Nan Zhang, Robin Smith*  
209

Optimal blending study for the commercial gasoline  
*Cristian Patrascioiu, Bogdan Doicin, Grigore Stamatescu*  
215

Population balance model for enzymatic depolymerization of branched starch  
*Christoph Kirse, Heiko Briesen*  
221

Analysis of the transfer of radical co-polymerization systems from semi-batch to continuous plants  
*Thilo Goerke, Sebastian Engell*  
227

Thermodynamic calculations for systems biocatalysis  
*Rohana Abu, Maria T. Gundersen, John M. Woodley*  
233

Parallel computation method for solving large scale equation-oriented models  
*Yannan Ma, Jizhu Weng, Zhijiang Shao, Xi Chen, Lingyu Zhu, Yuhong Zhao*  
239

Dynamic investment appraisal: Economic analysis of mobile production concepts in the process industry  
*G. Bas, T. E. Van der Lei*  
245
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction of heat capacity of ionic liquids based on COSMO-RS $S_\sigma$ profile</td>
<td>Yongsheng Zhao, Ying Huang, Xiangping Zhang, Suojiang Zhang</td>
<td>251</td>
</tr>
<tr>
<td>OPOSSIM: A population balance-SIMULINK module for modelling coupled hydrodynamics and mass transfer in liquid extraction equipment</td>
<td>Menwer Attarakih, Samer Al-Zyod, Mark Hlawitschke, Hans-Jörg Bart</td>
<td>257</td>
</tr>
<tr>
<td>CFD-DEM simulation of a fluidized bed crystallization reactor</td>
<td>Kristin Kerst, Luis Medeiros de Souza, Antje Bartz, Andreas Seidel-Morgenstern, Gábor Janiga</td>
<td>263</td>
</tr>
<tr>
<td>A modelling, simulation, and validation framework for the distributed management of large-scale processing systems</td>
<td>Shaghayegh Nazari, Christian Sonntag, Goran Stojanovski, Sebastian Engell</td>
<td>269</td>
</tr>
<tr>
<td>Performance analysis and optimization of the biomass gasification and Fischer-Tropsch integrated process for green fuel Productions</td>
<td>Karittha Im-orb, Lida Simasatitkul, Amornchai Arabornwichanop</td>
<td>275</td>
</tr>
<tr>
<td>Dynamic behavior adjustment of 1, 3-propanediol fermentation process</td>
<td>Hao Jiang, Nan Zhang, Jinsong Zhao, Tong Qiu, Bingzhen Chen</td>
<td>281</td>
</tr>
<tr>
<td>Modelling and simulation of pressure swing adsorption (PSA) processes for post-combustion carbon dioxide (CO$_2$) capture from flue gas</td>
<td>George N. Nikolaidis, Eustathios S. Kikkinides, Michael C. Georgiadis</td>
<td>287</td>
</tr>
<tr>
<td>Validation of a functional model for integration of safety into process system design</td>
<td>Wu, J., Lind, M., Zhang, X., Jørgensen, S. B., Sin, G</td>
<td>293</td>
</tr>
<tr>
<td>A dynamic method for computing thermodynamic equilibria in process simulation</td>
<td>Alexander Zinser, Kongmeng Ye, Liisa Rihko-Struckmann, Kai Sundmacher</td>
<td>299</td>
</tr>
<tr>
<td>Dynamics and operation analysis of the PHB (polyhydroxybutyrate) fermentation</td>
<td>Moises González-Contreras, Omar Anaya-Reza, Mauricio Sales-Cruz, Teresa Lopez-Arenas</td>
<td>305</td>
</tr>
<tr>
<td>Retrofitting of concentration plants using global sensitivity analysis</td>
<td>Freddy Lucay, Luis A. Cisternas, Edelmira D. Gálvez</td>
<td>311</td>
</tr>
</tbody>
</table>
Model-based design of experiments for the identification of kinetic models in microreactor platforms
Federico Galvanin, Enhong Cao, Noor Al-Rifai, Asterios Gavriilidis, Vivek Dua

Application of derivative-free estimator for semi batch autocatalytic esterification reactor: Comparison study of unscented Kalman filter, divided difference Kalman filter and cubature Kalman filter
F. S. Rohman, S. Abdul Sata, N. Aziz

Modeling and parameter estimation of coke combustion kinetics in a glycerol catalytic conversion reactor
Minghai Lei, François Lesage, M. Abderrazak Latifi, Serge Tretjak

Behavior of heavy metals during gasification of phytoextraction plants: thermochemical modelling
Marwa SAID, Laurent CASSAYRE, Jean-Louis DIRION, Ange NZIHOU, Xavier JOULIA

Multi-objective optimization for the production of fructose in a Simulated Moving Bed Reactor
Edwin Zondervan, Bram van Duin, Nikola Nikacevic, Jan Meuldijk

A modeling framework for optimal design of renewable energy processes under market uncertainty
Aryan Geraili, Jose A. Romagnoli

A molecular reconstruction feed characterization and CAPE OPEN implementation strategy to develop a tool for modeling HDT reactors for light petroleum cuts
César G. Pernalete, Jasper van Baten, Juan C. Urbina, José F. Arévalo

Techno-economic analysis of ethanol-selective membranes for corn ethanol-water separation
Adam Kelloway, Michael Tsapatsis, Prodromos Daoutidis

Equation-oriented modeling of multi-stream heat exchanger in air separation units
Liuzhen Jiang, Kai Zhou, Lingyu Zhu

Proposal of a new pathway for microalgal oil production and its comparison with conventional method
Sofia Chaudry, Parisa A. Bahri, Navid R. Moheimani

Superstructure development, simulation and optimization of desalination systems using Aspen Custom modeler
Sidra N. Malik, Parisa A. Bahri, Linh T. T. Vu

Microalgae growth determination using modified breakage equation model
Ergys Pahija, Yu Zhang, Maojian Wang, Yi Zhu, Chi Wai Hui
A new strategy for the simulation of gas pipeline network based on system topology identification
Zengzhi Du, Chunxi Li, Wei Sun, Jianhong Wang

Modelling and optimization of a heat integrated gasification process
Yi Zhu, Adetoyese Olajire Oyedun, Maojian Wang, Ergys Pahija, Chi Wai Hui

Analyzing and modeling ethylene cracking process with complex networks approach
Zhou Fang, Tong Qiu, Bingzhen Chen

Optimization and economic evaluation of bioethanol recovery and purification processes involving extractive distillation and pressure swing adsorption
Y. Y. Loy, X. L. Lee, G. P. Rangaiah

Data reconciliation in reaction systems using the concept of extents
Sriniketh Srinivasan, Julien Billeter, Shankar Narasimhan, Dominique Bonvin

Development of a generic model of a Ruthenium reactor
Norbertin Nkoghe Eyeghe, Carl Sandrock, Carel Van Dam

Dynamic modelling and experimental validation of a pilot-scale tubular continuous reactor for the autohydrolysis of lignocellulosic materials
C. González-Figuero, A. Sánchez, G. Díaz, F. Rodríguez, R. Flores, M. A. Ceballos, R. Puente, H. A. Ruiz

First-principles model diagnosis in batch systems by multivariate statistical modeling
Natascia Meneghetti, Pierantonio Facco, Sean Bermingham, David Slade, Fabrizio Bezzo, Massimiliano Barolo

Integrated analysis of an evaporation and distillation bioethanol industrial system using direct and indirect heating
Rodrigo O. Silva, Vandré C. Tiski, Rafael O. Defendi, Lucas B. Rocha, Oswaldo C. M. Lima, Laureano Jiménez, Luiz Mario M. Jorge

Reformulating the minimum eigenvalue maximization in optimal experiment design of nonlinear dynamic biosystems
Dries Telen, Nick Van Riet, Filip Logist, Jan Van Impe

A framework for modular modeling of the diesel engine exhaust gas cleaning system
An approximate modelling method for industrial L-lysine fermentation process
Hangzhou Wang, Faisal Khan, Bo Chen, Zongmei Lu 461

Model-based prediction and experimental validation of viscosities of soap emulsions
Daniel M. Macías-Pelayo, Pedro A. Alonso-Dávila, Alfonso Martínez-Villalobos, Alicia Román-Martínez 467

A novel quantisation-based integration method for ODEs
Vassilios S. Vassiliadis, Fabio Fiorelli, Harvey Arellano-Garcia 473

Modelling and parameter estimation of enzymatic biodiesel synthesis
Priscila S. Sabaini, Thais Fabiana C. Salum, Rossano Gambetta, Fabricio Machado 479

Analysis of two alternatives to produce ethylene from shale gas
Andrea P. Ortiz-Espinoza, Mahmoud M. El-Halwagi, Arturo Jiménez-Gutiérrez 485

A crude oil econometric model for PSE applications
Davide Manca, Valentina Depetri, Clément Boisard 491

Simulation study of temperature distribution in the thermal drying oven for a lacquer coating process
Paisan Kittisupakorn, Patsarawan Lipikanjanakul 497

Outlier treatment for improving parameter estimation of group contribution based models for upper flammability limit
Jérôme Frutiger, Jens Abildskov, Gürkan Sin 503

Integration and optimization of an air separation unit (ASU) in an IGCC plant
Maojian Wang, Adetoyese Olajire Oyedun, Ergys Pahija, Yi Zhu, Guilian Liu, Chi Wai Hui 509

Mathematical modeling of an industrial delayed coking unit
Claudio N. Borges, Maria A. Mendes, Rita M. B. Alves 515

Post-combustion CO$_2$ capture with sulfolane based activated alkanolamine solvent
Sukanta K. Dash, Bikash K. Mondal, Amar N. Samanta, Syamalendu S. Bandyopadhyay 521

Modeling and sensitivity analysis of a medium-temperature gas cleaning process of biogenous synthesis gas
Michaela Fraubaum, Heimo Walter 527

Exergy analysis of monoethylene glycol (MEG) recovery systems
Alexandre M. Teixeira, José Luiz de Medeiros, Ofélia Q. F. Araújo 533

Production of biodiesel via enzymatic palm oil ethanolysis: Kinetic study
Shayane P. Magalhães, Fernando L. P. Pessoa, Tito L. M. Alves 539
Integration of retrofitted coal-fired power plant with CCS: Power de-rate minimization

*Jinjoo An, Ung Lee, Jaeheum Jung, Chonghun Han*

CUDA-optimized cellular automata for diffusion limited processes

*Andrey Kolmocchenko, Natalia Menshutina*

Effect of ship motion on amine absorber with structured-packing for CO$_2$ removal from natural gas: An approach based on porous medium CFD model

*Dung A. Pham, Young-Il Lim, Hyunwoo Jee, Euisub Ahn, Youngwon Jung*

Model-based analysis and efficient operation of a glucose isomerization reactor plant

*Emmanouil Papadakis, Ulrich Madsen, Sven Pedersen, Krist V. Gernaey, John M. Woodley, Rafiqul Gani*

pyIDEAS: An open-source python package for model analysis

*Timothy Van Daele, Stijn Van Hoey, Ingmar Nopens*

A numerical procedure for model identifiability analysis applied to enzyme kinetics

*Timothy Van Daele, Stijn Van Hoey, Krist V. Gernaey, Ulrich Krühne, Ingmar Nopens*

Integrated simulation platform of chemical processes based on virtual reality and dynamic model

*Na Luo, Xiaoqiang Wang, Feng Van, Zhen-Cheng Ye, Feng Qian*

OsmoseLua - An integrated approach to energy systems integration with LCIA and GIS

*Min-Jung Yoo, Lindsay Lessard, Maziar Kermani, François Maréchal*

Incremental kinetic identification based on experimental data from steady-state plug flow reactors

*Nirav Bhatt, Srividhya Visvanathan*

Nonlinear fuzzy identification of batch polymerization processes

*Nádson N. M. Lima, Lamia Zuniga Linan, Delba N. C. Melo, Flavio Manenti, Rubens Maciel Filho, Marcelo Embiruçu, Maria R. Wolf Maciel*

Modeling dissolution of solids based on cellular automata with changing sizes of cells

*Sviatoslav I. Ivanov, Irina A. Tiptsova, Natalia V. Menshutina*

Data analysis and modelling of a fluid catalytic cracking unit (FCCU) for an implementation of real time optimization

*Juan D. Reyes, Adriana L. Rodriguez, Carlos A. M. Riascos*
A hybrid discrete/continuous dynamic model of trayed tower hydraulics
David Pinilla-García, Santos Galán 617

Application of the lagrangian cfd approach to modelling of crystallization in stirred batch reactors using the smoothed particle hydrodynamics method
Dragan D. Nikolic, Brian P. de Souza, Patrick J. Frawley 623

Model reduction in visual modelling
Heinz A. Preisig 629

Automatic reconstruction and generation of structured hexahedral mesh for non-planar bifurcations in vascular network
Mahsa Ghaffari, Chih-Yang Hsu, Andreas A. Linninger 635

Developing Surrogate Models via Computer Based Experiments
Mandar N. Thombre, Heinz A. Preisig and Misganaw B. Addis 641

Systematic development of kinetic models for systems described by linear reaction schemes
Carolina S. Vertis, Nuno M. C. Oliveira, Fernando P. M. Bernardo 647

Rigorous modeling, simulation and optimization of a dividing wall batch reactive distillation column: A comparative study
Edna Soraya Lopez-Saucedo, Juan Gabriel Segovia-Hernandez, Ignacio E. Grossmann and Salvador Hernandez-Castro 653

Theoretical modeling of (non) reactive residue curve maps for TAME synthesis system using MATLAB – SIMULIS thermodynamics communication facilitie’s
M. M. Ceauşescu, Jordi Bonet-Ruíz, V. Pleșu P. Iancu, A. E. Bonet-Ruíz 659

Alternative prediction models for data scarce environment
Ali Al-Shanini, Arshad Ahmad, Faisal Khan, Olagoke Oladokum, Shadia Husna Mohd Nor 665

Multi-objective optimisation of atmospheric crude distillation system operations based on bootstrap aggregated neural network models
Funmilayo N. Osuolale, Jie Zhang 671

Optimization studies through simulation of a methanol/water/glycerol distillation column
José Palmeira, João M. Silva, Henrique A. Matos 677

Simulation of a 3D bioprinted human vascular segment
Nogueira JA., Lara VF., Marques TS., Oliveira DS., Mironov V., da Silva JV., Rezende RA. 683
Modeling fixed-bed multicomponent adsorption as a step to achieve ultra-low sulfur diesel
Tristán Esparza-Isunza, Felipe López-Isunza 689

Experimental and CFD simulation studies of circulating fluidized bed riser in the fast fluidization regime
Mukesh Upadhyay, Myung Won Seo, Nam Sun Nho, Jong-Ho Park 695

Application of new electrolyte model to phase transfer catalyst (PTC) systems
Sun Hyung Kim, Amata Anantpinijwatna, Jeong-Won Kang, Mauricio Sales-Cruz, Rafiqul Gani 701

A novel rigorous mathematical programming approach to construct phenomenological models
Vassilios S. Vassiliadis, Yian Wang, Harvey Arellano-Garcia, Ye Yuan 707

Dynamic simulation of a batch aqueous two-phase extraction process for α-amylase
Nehal Patel, Daniel Bracewell, Eva Sorensen 713

Contributed Papers

T-2: Mathematical Programming (Optimization)

A framework for hybrid multi-parametric model-predictive control with application to intravenous anaesthesia
Ioana Nascu, Richard Oberdieck, Efstratios N. Pistikopoulos 719

Dynamic chance-constrained optimization under uncertainty on reduced parameter sets
David Müller, Erik Esche, Sebastian Werk, Günter Wozny 725

Optimal design of thermal membrane distillation networks
Ramon González-Bravo, Fabricio Nápoles-Rivera, José María Ponce-Ortega, Medardo Serna-Gonzalez, Mahmoud M. El-Halwagi 731

Multicolumn-multicut cross decomposition for stochastic mixed-integer linear programming
Emmanuel Ogbe, Xiang Li 737

Efficient ant colony optimization (EACO) for solvent selection using computer aided molecular design
Berhane H. Gebreslassie, Urmila M. Diwekar 743

Optimisation of process parameters with simultaneous consideration of energy efficiency measures
Timo Bohnenstaedt, Kristina Zimmermann, Georg Fieg 749

Optimization of split fractions and cleaning schedule management in heat exchanger networks
Jian Du, Jie Fan, Linlin Liu, Jilong Li, Yu Zhuang, Quinwei Meng 755
A cost targeting method for studying investment on heat exchanger networks for collection of industrial excess heat
Matteo Morandin, Lina Eriksson 761

Ellipsoidal arithmetic for multivariate systems
M. E. Villanueva, J. Rajyaguru, B. Houska, B. Chachuat 767

Reduced model trust region methods for embedding complex simulations in optimization problems
John P. Eason, Lorenz T. Biegler 773

Optimization of LNG supply chain
Alice Bittante, Raine Jokinen, Frank Pettersson, Henrik Saxén 779

Metaheuristics for the optimal design of NGL pipeline
Paola P. Oteiza, Martín C. De Meio Reggiani, Diego A. Rodriguez, Valentina Viego, Nélida B. Brignole 785

Deterministic global dynamic optimisation using interval analysis
Carlos Perez-Galvan, I. David L. Bogle 791

Separation process optimization under uncertainty by chance constraint programming with recourse
Li Sun, Huajie Zhang 797

Optimal operating policies for synthesizing tailor made gradient copolymers
Cecilia Fortunatti, Bruno Mato, Adriana Brandolin, Claudia Sarmoria, Mariano Asteasuain 803

Degeneracy hunter: An algorithm for determining irreducible sets of degenerate constraints in mathematical programs
Alexander W. Dowling, Lorenz T. Biegler 809

Dynamic multi-objective optimization of batch chromatographic separation processes
A. Holmqvist, F. Magnusson, B. Nilsson 815

An adaptive multi-objective differential evolution algorithm for solving chemical dynamic optimization problems
Xu Chen, Wenli Du, Feng Qian 821

Optimal operation of a pyrolysis reactor
Aysar T. Jarullah, Shemaa A. Hameed, Zina A. Hameed, I.M. Mujtaba 827

Representation of the convex envelope of bilinear terms in a reformulation framework for global optimisation
Andreas Lundell, Tapio Westerlund 833

Interactive multi-objective decision-support for the optimization of nonlinear dynamic (bio)chemical processes with uncertainty
Mattia Vallerio, Jan Hufkens, Jan Van Impe, Filip Logist 839
Superstructure optimisation of a water minimization network with an embedded multi-contaminant electrodialysis model
Chiedza D. Nezungai, Thokozani Majozi 845

Deterministic global optimization and transition states
Dimitrios Nerantzis, Claire S. Adjiman 851

A metaheuristic for solving large-scale two-stage stochastic mixed 0-1 programs with a time stochastic dominance risk averse strategy
Susana Baptista, Ana P. Barbosa-Póvoa, Laureano Escudero, Maria I. Gomes, Celeste Pizarro 857

Optimized production of multilayered monodisperse polymer nanoparticles
Brahim Benyahia, M. A. Latifi, C. Fonteix, F. Pla 863

Systematic design of chemical reactors with multiple stages via multi-objective optimization approach
Mohd Nazri Mohd Fuad, Mohd Azlan Hussain 869

Synthesis and design of integrated process and water networks
Zainatul B. Handani, Alberto Quaglia, Rafiqul Gani 875

Optimization of high-density polyethylene process based on molecular weight distribution and chemical composition distribution under uncertainty
Jiayuan Kang, Xi Chen, Zhijiang Shao 881

A systematic approach for targeting zero liquid discharge in industrial parks
Zakarya A. Othman, Patrick Linke, Mahmoud El-Halwagi 887

Decomposition techniques for the real-time optimization of a propylene production unit
A. M. Acevedo P., J.E.A. Graciano, Fabio D.S. Liporace, A.S. Vianna Jr., Gato A.C. Le Roux 893

An approach to deal with non-convex models in real-time optimization with modifier adaptation
Maximiliano Garcia, Juan Pablo Ruiz, Marta Basualdo 899

A robust minimax Semidefinite Programming formulation for optimal design of experiments for model parameterisation
Belmiro P.M. Duarte, Guillaume Sagnol, Nuno M.C. Oliveira 905

Design of a multi-contaminant water allocation network using multi-objective optimization
Sofía De-León Almaraz, Marianne Boix, Catherine Azzaro-Pantel, Ludovic Montastruc, Serge Domenech 911
Simulation and optimization of the ethane cracking process to produce ethylene  
*Daison Y. Caballero, Lorenz T. Biegler, Reginaldo Guirardello* 917

Study of performance of a novel stochastic algorithm based on Boltzmann distribution (BUMDA) coupled with self-adaptive handling constraints technique to optimize chemical engineering process  

Dynamic modelling and optimal design of the solid-phase reactive chromatographic separation system for biomass saccharification via acid hydrolysis  
*Pakkapol Kanchanalai, Matthew J Realff, Yoshiaki Kawajiri* 929
Study of Performance of a Novel Stochastic Algorithm based on Boltzmann Distribution (BUMDA) coupled with self-adaptive handling constraints technique to optimize Chemical Engineering process

R. Murrieta-Dueñas\textsuperscript{a,c,*}, J. Cortez-González\textsuperscript{a,c}, A. Hernández-Aguirre\textsuperscript{b}, R. Gutiérrez-Guerra\textsuperscript{a}, S. Hernández\textsuperscript{a}, J. G. Segovia-Hernández\textsuperscript{a}
\textsuperscript{a}Universidad de Guanajuato, Campus Guanajuato, Departamento de Ingeniería Química, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico.
\textsuperscript{b}Centro de Investigacion en Matematicas A.C., Departamento de Ciencias Computacionales, Callejón de Jalisco s/n, 36240, Mineral de Valenciana, Guanajuato, Gto., México.
\textsuperscript{c}Instituto Tecnológico Superior de Guanajuato, Departamento de Computo Evolutivo Aplicado, Carretera Guanajuato-Puentecillas km 10.5, 36262, Guanajuato, Gto., Mexico.
Corresponding author: rmurrieta@itesg.edu.mx

Abstract

The optimal design of distillation systems is a highly non-linear, multivariable and multimodal problem. The rigorous model of distillation columns is represented by mass, equilibrium, sum and heat equations called MESH equations and phase equilibrium calculations (Thermodynamic model). Furthermore, it has several local optimums and is subject to several kind constraints such as, design and topology scheme constraints, and achieves targets of purity and recovery for each split component. In this paper, we propose the employment of a novel stochastic algorithm called Boltzmann Univariate Marginal Distribution Algorithm (BUMDA, Valdez, S. I. et al., 2013) coupled with self-adaptive handling constraints technique to optimize a well-known distillation process scheme. The optimization problem consists in minimizing the total reboiler duty in a distillation train to split a mixture made of four components. The BUMDA’s performance is compared with Differential Evolution (DE) due to the fact that this last algorithm is used frequently in the optimization of distillation columns. The results show that the BUMDA algorithm is better than the DE algorithm regarding effort computing, quality solution, and time used to find solution. The BUMDA algorithm is efficient, trusted, easy to use and of general applicability in any chemical engineering process.

Keywords: Optimization, BUMDA, Stochastic Algorithms, Distillation train, EDA’s.

1. Introduction

The optimization of a distillation system is considered a computer problem of large proportion with a significant number of strongly nonlinear equations that cause serious numerical difficulties when solving the model. Nowadays, this optimization problem is tackled with deterministic and stochastic approaches. Deterministic strategies tackle the problem considering the sequence as superstructures which can be solved with mixed-
integer linear programming and non-linear programming approaches; other authors consider reduced models. On the other hand, the stochastic algorithms can deal with multi-modal and non-convex problems in an effective way and without the mentioned limitations. They are a suitable alternative to the design and optimization of complex separation schemes. In chemical engineering processes, distillation is a widely used separation process and a very large consumer of energy. A great amount of research has been carried out to improve the energy efficiency of distillation systems, in terms of either the design of optimal distillation schemes or improving internal column efficiency. Nowadays, the optimal design of multicomponent distillation systems remains one of the most challenging problems in processes engineering.

In this work, BUMDA algorithm performance is compared with Differential Evolution algorithm (DE) due to the fact that it is one of the most used evolutionary algorithms for solving global optimization problems in chemical engineering processes (R. Vakili et. al., 2011; Cabrera-Ruiz et. al., 2011). Both algorithms were coupled with self-adaptive handling constraints technique and were employed to optimize a distillation train that split a four components mixture.

2. Case study
In chemical engineering processes MESH equations and thermodynamic equilibrium equations have high levels of nonlinearities and nonconvexities and also present convergence difficulties. This leads to high computational times and the requirement of good initial guesses and bounds on the variables to achieve convergence. Following case of study is described. The objective of a distillation train is to separate a multicomponent mixture using only single columns. Each column receives a feed-in and carries out the distillation of two adjacent components (adjacent volatility), and delivers two products: one at the top and the other at the bottom. In order to separate a mixture of \( N \) components, it is necessary to use \( N-1 \) single columns. The order in which the components are separated is based on their relative volatility (Figure 1).

![Figure 1. Flowsheet of distillation train to split a mixture of four components.](image-url)
Study of performance of a novel stochastic algorithm based in Boltzmann Distribution (BUMDA) coupled with self-adaptive handling constraints technique to optimize Chemical Engineering process

The basic design of each distillation column requires finding the best values of: the total number of stages $NT$, feed stage $NF$ and reflux ratio $RR$, which is the relationship between the liquid flow $L$ that returns to the column and the vapor flow $V$ that rises in the column. This takes places on the upper part of the column. With this set of variables, the main goal of design is to obtain the minimum total heat duty possible to achieve the separation of the mixture. In mathematical terms, the problem statement optimization is described as following:

Find vector 

$$Z = (NT_{B1}, NF_{B1}, NT_{B2}, NF_{B2}, NT_{B3}, NF_{B3}, RR_{B1}, RR_{B2}, RR_{B3})$$

To minimize fitness function 

$$Q = f(Z)$$

Subject to constraint function 

$$g_{1,j}(Z) = x_{\text{pur}} - x_{\text{target}} \leq 0, \quad j = 1, \ldots, M_{\text{constraints}}$$

$$g_{2,j}(Z) = x_{\text{rec}} - x_{\text{target}} \leq 0, \quad j = 1, \ldots, M_{\text{constraints}}$$

And subject to boundary constraints

$$z_{i}^{(L)} \leq z_{i} \leq z_{i}^{U}, \quad i = 1, \ldots, D$$

$$2 < NF_{Bl} \leq NT_{Bl}, \quad l = 1, \ldots, B_{\text{columns}}$$

Where for each column $B$, $NT$ is the total number of stages and $NF$ is the number of feed stage. These dimensions are discrete variables and $RR$ is the reflux ratio. These are continuous variables; in total we have nine dimensions, of which six are discrete and three are continuous. The fitness function is to minimize the total heat reboiler duty $Q$ that is a function of vector $Z$. Regarding the design constraint, we have two types: one is referred to as purity, and other one as recovery; these exist for each component. Also it is important to consider the boundary constraints, because $NF$ should always be less than $NT$ and each dimension, $Zi$ is between lower and upper boundaries.

3. Optimization strategy

In this research, we chose two stochastic algorithms: Differential Evolution (Viswanathan, J. and Grossmann, I. E., 1993). Which generates new points that are perturbations of existing points, and Boltzmann Univariate Marginal Distribution Algorithm BUMDA (Valdez, S. I. et al., 2013), that uses a normal distribution to approximate the Boltzmann Distribution, using the mean and variance of the population. These algorithms are coupled with self-adaptive handling constraints that allow use to find feasible solutions that achieve all design and specification constraints throughout distillation column optimization. Furthermore, it is important to mention that the optimization approach has been developed using an interface which links the optimizer algorithms with the modular simulator through databases. Following the characteristics of the algorithms, technique of handling constraints and optimization approach are briefly described.

3.1. Boltzmann Univariate Distribution Algorithm (BUMDA)

EDA’s use a probability distribution, called the search distribution, to sample new candidate solutions. Hence, the search strategy in EDA’s is to increment the probability of sampling the optimum from the search distribution. The advantage of the BUMDA algorithm is the preservation of the desired characteristics of the Boltzmann distribution,
while maintaining a low computational cost in the estimation and sampling steps. It also focuses on sampling as many promising solutions as possible, avoiding sampling promising and non-promising solutions and then rejecting some of them. The BUMDA algorithm starting with a population is initialized between the bounds of the search space and the fitness function calculated. 30% of the best individuals are stored in the selected set, and used to compute the mean and variance parameters of the Normal distribution. Then new individuals are simulated from a Normal distribution with such parameters to populate the next generation.

3.2. Differential Evolution (DE)
Differential evolution is proposed by Storn and Price (Storn, R. and Price, K., 1995). DE is a stochastic direct search method using population or multiple search points. DE has been successfully applied to the optimization problems including non-linear, non-differentiable, non-convex and multi-modal functions. It has been shown that DE is fast and robust when applied to these functions. In DE, initial individuals are randomly generated within the search space and form an initial population. Each individual \( i \) contains \( D \) genes as decision variables or a decision vector \( Z_i \). At each generation or iteration \( G \), all individuals \( N_{pob} \) are selected as parents. Each parent is processed as follows: the mutation process begins by choosing three individuals from the parents except for the parent in the processing. The first individual is a base vector. Subsequent individuals are paired to create difference vectors. The difference vectors are scaled by the scaling factor \( F \) and added to the base vector. The resulting vector is then mated or recombined with the parent. The probability of recombination at an element is controlled by the crossover factor \( CR \). This crossover process produces a trial vector. Finally, for survivor selection, the trial vector is accepted for the next generation if the trial vector is better than the parent.

3.3. Optimization Process
For the optimization approach implemented in this work, we have developed an interface which links the optimizer BUMDA or DE (Master, coded in MatLab) with the modular simulator Aspen Plus (Fitness Function Evaluator) through the Excel (Database). In this interface the stochastic algorithm needs one individual physically feasible of beginning the optimization process. Here, physically feasible implies that for a distillation column, the feed stage must be smaller than the total number of stages, and the reflux ratio is greater than zero. The stochastic algorithm generates individuals with the proper dimensionality, which is sent to Aspen Plus, one by one, in order to simulate the distillation scheme and get the values of the fitness function evaluated with constraints.

4. Discussion and Results
In this paper, a comparative analysis of performance ED and BUMDA stochastic algorithms is presented. Many authors have used ED algorithm to optimize chemical engineering problems while the BUMDA algorithm has been used only once. Both algorithms are tested to optimize two well-known problems in chemical engineering. The problem is to purify a four aliphatic hydrocarbons mixture in a distillation train. We carried out tuning of parameters in two algorithms. The total number of evaluation is the stop criterion and the fitness function is the total heat duty minimization. The simulations were carried out with a PC computer with an i5 processor core, clock frequency at 2.8 GHz, and 8 GB of RAM. In this case we study a mixture made of four lineal aliphatic hydrocarbons fed at a flow-rate of 100 kmol/h; which is introduced in the first column as saturated liquid. The characteristics and constraints of the mixture
are presented in Table 1. The proportion of each component is shown in mol fraction. Each component must be delivered with the specified purity and recovery. The design pressure for the separation was chosen to ensure that cooling water was used in the condensers. The phase equilibrium for liquid of this mixture is calculated with the Chao-Seader model, because it is usually recommended for hydrocarbon mixtures operating at low or medium pressure.

<table>
<thead>
<tr>
<th>Characteristics of the mixture</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Component</td>
</tr>
<tr>
<td>A</td>
<td>n-butane</td>
</tr>
<tr>
<td>B</td>
<td>n-pentane</td>
</tr>
<tr>
<td>C</td>
<td>n-hexane</td>
</tr>
<tr>
<td>D</td>
<td>n-heptane</td>
</tr>
</tbody>
</table>

4.1. Analysis performance of DE and BUMDA stochastic algorithms

The main aim of this paper is analyze the performance of two algorithms, DE inspired in natural phenomena and BUMDA based in estimation of Boltzmann distribution. The comparative parameters are effort of computation, time that found solution, quality of solution and behavior along optimization process. In Table 2 we analyze three comparative parameters. The first comparison is effort of computation; i.e. maximum number of function evaluations that each algorithm requires to find the best solution. It is clear that the BUMDA algorithm only needs 15% of \(NEF_{\text{max}}\) of what the DE algorithm requires. The time find a solution, is in direct relation with \(NEF_{\text{max}}\), so that the BUMDA is faster than the DE algorithm. The BUMDA only requires 8% of the time that DE algorithm requires.

Table 2. Comparative analysis of best individuals obtained by DE and BUMDA algorithms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DE Algorithm</th>
<th>BUMDA Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effort of computation ((NEF_{\text{max}}))</td>
<td>20,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Time of solution ((\theta,\text{hours}))</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>Quality solution ((Q,\text{BTU/h}))</td>
<td>9425750.75</td>
<td>7153129.14</td>
</tr>
<tr>
<td>Quality solution ((NT_{\text{total}}))</td>
<td>84</td>
<td>71</td>
</tr>
</tbody>
</table>

In Figure 2 there are two sets of point: blue points that represent the best solutions given by the DE algorithm and pink points that are the feasible solutions obtained with the BUMDA algorithm. In this graph, the total number of stages is the axis “x” versus total heat duty shown in the “y” axis. Both variables are the most important in the design of distillation columns, since they show the compromise between size column and its energy consumption. It’s clear that the pink points are better than blue points, both in \(NT\) as \(Q\). If we compare the best solution only in terms of energy, the best pink point requires around 2,300,000 BTU/h less of the energy consumption than the best blue point; this behavior is similar in total number of stages. Based on these results, the best
solution obtained by the BUMDA algorithm provides the better compromise to design the distillation train.

Finally, based on the results obtained with both algorithms in this case study, the novel stochastic algorithm based on Boltzmann distribution, the BUMDA algorithm implemented by us, is better than the DE algorithm, due to the fact that offers better solutions in less time and requires low computation effort. In addition the performance in optimization process of the BUMDA algorithm presents a high convergence in the best feasible zone and is identified clearly in an intensification zone, which leads to an improvement in the quality of solutions. This study verifies that the approach presented in this paper, BUMDA algorithm with self-adaptive handling constraints technique, is a powerful and robust tool capable of optimizing processes in chemical engineering and is potentially useful in other areas of engineering.

5. Conclusions

In this paper, a comparative study of the general performance of stochastic algorithms to optimize a distillation train is presented. We used two stochastic algorithms: Differential Evolution (ED) and Boltzmann Univariate Marginal Distribution Algorithm (BUMDA). The best solution was found by the BUMDA algorithm. The BUMDA algorithm is better than the DE algorithm because BUMDA is capable of finding the best design with little numeric effort, short computing time and a good success rate.

References


