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Abstract 
This work addresses the design and performance evaluation of a control system for a 
class of continuous stirred tank reactors to produce homopolymers via free radicals. The 
control system claims to be of practical implementation in the sense that: (i) it manages 
both measurement types existing in this class of processes: continuous-instantaneous, 
and discrete-delayed with a periodic sampling-time; and (ii) its designing exploits the 
linear systems theory on the basis of the reactor model. The behavior of the control 
system, achieving stabilization of an open-loop unstable steady state, in spite of 
disturbances and parametric model errors, is discussed and illustrated via simulation 
highlighting the effect of the sampling time. 
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Introduction 
The polymerization reactors, because of their industrial importance and highly nonlinear 
nature, have represented excellent study cases to evaluate and develop different control 
techniques [1]. In fact, as it can be observed in the open literature, considering the 
challenge that the nonlinear feature places in front, the studies follow nonlinear 
advanced approaches; most of them are based on the process model. However, 
nowadays the industrial polymerization reactors are typically operated through linear 
controllers that automatically maintain nominal levels of temperature and volume, and 
supervisory schemes that control the production rate and product quality; and, it can be 
said that these reactors still are not being fit with advanced control schemes. It can be 
argued that the nonlinear nature of most of advanced control systems makes them seem 
complex and of expensive implementation; besides, polymerization reactors are also 
monitored by discrete-delayed measurements, and the advanced control systems are 
designed in a framework of continuous measurements, except when model predictive 
control technique or Kalman filters are applied. 
The above mentioned has motivated a research line of automatic control systems of 
polymerization reactors that: (i) are based on deterministic models, (ii) manage both 
continuous-instantaneous and discrete-delayed measurements, and (ii) are of technically 
feasible and non-expensive implementation. Methodologically speaking, a linear 
approach must firstly be followed, but this kind of study is missing in the open 
literature; and even though controlling temperature and volume does not represent a 
challenge for linear controllers, automatically controlling production rate and product 
quality does. 
Then, in this work, on the basis of linear control elements, and regarding the discrete-
delayed nature of the measurement related to the production rate, a control system was 
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designed for the class of free-radicals homopolymerization continuous stirred tank 
reactors. Next, the performance was evaluated emphasizing the effect of the sampling-
time.  

The Polymerization Reactor and its Control Problem 
In this work, the class of continuous stirred tank reactors, where a free radical 
homopolymerization takes place, was considered. This class of processes encloses most 
of the phenomenological characteristics of any polymerization reactor. Their dynamics, 
with respect to the production rate and safety aspects, are described by a set of four 
highly nonlinear equations [2]: 

Ý I = −rI (I ,T ) +ε ⋅ rP (I ,M ,T ) ⋅ I + (WI /V ) − (qe /V ) ⋅ I := fI (⋅) ,   ti+1 = ti +δt  (1a) 

Ý M = (1−εM ) ⋅ rP (I ,M ,T ) ⋅ M + (qe /V )(Me − M ) := fM (⋅) ,   yM (ti) = M(ti−1)  (1b) 

Ý T = (−ΔHP )rP (I ,M ,T ) −U ⋅ (T − TJ ) + (qe /V )(Te − T ) := fT (⋅) ,  yT (t) = T (t)  (1c) 

Ý V = −ε ⋅ rP (I ,M ,T ) ⋅V + qe − qs := fV (⋅) ,                                      yV (t) = V(t)    (1d) 

These equations result from material and energy balances, and polymerization 
arguments, and point up the reactor state is given by the initiator (I) and monomer (M) 
concentrations, and by the temperature (T) and volume (V) of the reactor content; and 
the inputs are the initiator (WI) and monomer (qe) feed rates, the jacket temperature (TJ), 
and the output flow rate (qs). Considering a practical case, the reactor is monitored via 
monomer (yM), temperature (yT) and volume (yV) measurements. It must be noticed yM, 
at the sampling time instant ti, takes the value of M at ti-1, and δt is the periodic sampling 
time (ti = ti-1 + δt); say, yM is a discrete-delayed measurement resulting from a sampling-
analysis activity along the reactor operation. The functionalities rI and rP represent the 
consumption rate of I and the polymerization rate, respectively; ε is the volume 
contraction factor, and U represents the heat transfer capabilty of the jacket. Then, the 
objective is controlling the reactor in a certain (possibly open-loop unstable) nominal 
state ( I ,M ,T ,V ) by the manipulation of qe, TJ, and qs, on the basis of the continuous 
measurements of T and V (yT(t), yV(t)), and the discrete-delayed measurement of M 
(yM(ti)). 

The Control System  
The control system for the polymerization reactor is depicted in Figure 1; it can be 
observed that the defined control structure is the following: M is controlled through qe, 
which is driven by an estimate of M (ME); T is controlled through  TJ, driven by yT; and 
V is controlled through qs, driven by yV. Then, the essential control elements are a 
controller, and an estimator; regarding to the discrete-delayed characteristic of yM, the 
estimator is added in order to provide ME(ti) each sampling time instant (ti). 

The Controllers  
The linear controllers for monomer, temperature and volume are: 

qe (τ ) = q e + kP
MC

⋅ (M E (ti) − M ) + kI
MC

⋅ (M E (ti) − M ) ⋅δti= 0

n� ,   τ ∈ [ti ,ti+1] (2a) 

u(t) = u + kP
X

⋅ (yX (t) − X ) + kI
X

⋅ (yX (s) − X ) ⋅ ds
0

t�  (2b) 
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where u = TJ, qs, and X = T, V, respectively; the ‘
_

’ symbol refers to a nominal value of 
the variable. The controllers have proportional and integral (sumatorial for the monomer 

controller) actions, where kP
MC ,kP

X ,kI
MC ,kI

X are the tuning gains. It is noticed that qe 
becomes a stepwise function that depends on the sequenece of the monomer estimate 
values {ME(t0), M

E(t1), M
E(t2), …}. 

 
 
 
 
 
 
 
 
 

  
 
 
 
 

Figure 1. Control System of the Polymerization Reactor 
 

The Estimator 
The estimator construction followed the straightforward application of the procedure 
given in [3] on the basis of the linearized version, at the nominal contidition, of the I 
and M dynamics of the reactor model (Eq. 1a, b), 

˜ Ý 
I = aII

˜ I + aIM
˜ M + aIT ˜ y T + aIV ˜ y V + aIqe

˜ q e + aIWI

˜ W I ,   amn = (∂fm /∂n)
x ,u 

 (3a) 

˜ Ý 
M = aMI

˜ I + aMM
˜ M + aMT ˜ y T + aMV ˜ y V + aMqe

˜ q e ,   ˜ y M (ti) = ˜ M (ti−1)  (3b) 

where the ‘∼’ symbol indicates a deviation variable between the actual and nominal 
values (i.e. ˜ M = M − M ). T and V dynamics are not considered since yT and yV equal T 
and V, respectively, and only I and M are necessary to estimate, in a reduced order 
estimation scheme [4]. The possibilty of the estimator construction is provided by the 
stable feature of the sole I-dynamics (Eq. 3a), and by the trivial observability property 
of the coefficients pair (aMM, 1). The estimator takes the following form:  

˜ I E (ti+1) = ΘI ( ˜ I E (ti), ˜ M E (ti), ˜ y T (t), ˜ y V (t), ˜ W I (t), ˜ q e (t))  (4a) 

˜ M E (ti+1) = ΘM ( ˜ I E (ti), ˜ M E (ti), ˜ y T (t), ˜ y V (t), ˜ q e (t)) + kP
MEeM (ti) + kI

MEiM (ti) , (4b) 

iM (ti+1) = iM (ti) + kI
MEeM (ti) ,   eM (ti) = ˜ y M (ti) − ˜ M E (ti)  (4c) 

where ΘI and ΘM are the transition maps of the linear differential equations (3a, b). 
Besides the proportional action, the estimator has a sumatorial one accounted by the 

variable iM. kP
ME

 and kI
ME  are the estimator tuning gains. 

 

281



  Hernández-Escoto et al. 

Tuning 
The tuning scheme was constructed through the following procedure: 
(i) for the continuous controllers (Eq. 2b), the coefficients of the corresponding second-
order closed-loop linearized dynamics of T and V, in a decoupled structure, were 
matched with the ones of the characteristic polynomial of the stable linear dynamics of 

reference 02 2
=++ xxx ωξω ��� ; where (ξ.- damping factors, and ω.- characteristic 

frequencies 
(ii) for the discrete M-controller (Eq. 2a) and M-estimator (Eq. 4), first a characteristic 
polynomial of reference was constructed on the basis of the eigenvalues (γ) that result 
from mapping the eigenvalues (λ) of the above continuos reference dynamics into the 
unit circle: γ = exp(λ δt); next, the coefficients of the characteristic polynomials of the 
corresponding second-order closed-loop discrete linear dynamics of M, and 
convergence error dynamics of the M-estimator, were matched with the reference 
characteristic polynomial. 
In this way, the gains are given in terms of the well-known parameters (ξ.- damping 
factor, ω.- characteristic frequency) of a stable dynamics: 

kP
X

= −(1/aXu)(aXX + 2ξXωX ) ,   kI
X

= −(ωX
2 / aXu) ,     aXu = (∂fX /∂u)

x ,u 
 (6a) 

kP
M ,Z

= (c1(δt ,ξM
Z ,ωM

Z ) + p1(δt ) +1) / p2
Z (δt ) ,              X = T, V     u = qe, TJ     (6b) 

kI
M ,Z

= (c1(δt ,ξM
Z ,ωM

Z ) +c2(δt ,ξM
Z ,ωM

Z ) +1) /(δt ⋅ p2
Z (δt )) ,   Z = C, E (6c) 

p1(δt ) = exp(aMM ⋅δt ) ,  p2
C (δt ) = aMqe

(1− p1(δt )) / aMM ,   p2
E

=1 

c1(δt ,ξ ,ω) = −2exp(δtξω) cos(δt 1−ξ
2
ω) ,   if   ξ ≤ 1; 

c1(δt ,ξ ,ω) = −(exp(2δt ξ
2

−1) +1) exp(−δt (ξ + ξ
2

−1)ω) ,   if ξ > 1, 

c2(δt ,ξ ,ω) = exp(−2δtξω) . 

Consequently, the controllers and the estimator are tuned in a framework of 
convergence rate manipulation by firstly setting the sampling time; next, choosing 
damping factors, and varying desired settling times with the characteristic frequencies. 

Control System Performance 
The test of the control system was based on the study case of Alvalrez [2]. The nominal 
operation conditions associated to an open-loop unstable steady state were considered, 
(I ,M ,T ,V ,q e ,T c ,q s,W I ,T e )  = (0.001831 gmol/L, 0.5809, 349.58 K, 40 L/min, 315 K, 
34.94 L/min, 0.08 gmol/min, 300 K); with these conditions, the polymerization is 
carried out at high solid fraction with gel effect, making  the control system test 
extreme. In order to emulate the operational problems that appear in an industrial 
framework (i.e. change in the heat transfer capability of the reactor due to jacket 
fouling, and changes in the kinetics efficiency due to different raw material providers), 
parameter errors were introduced to the reactor model. Besides, disturbances on WI 
(+10% of the nominal value) and Te (+2% of the nominal value) were introduced. 
In Figure 2 the performance of the control system is shown for two sampling time 
situations: (i) δt = 5 min, with the tuning parameters (ξM

C, ξT, ξV, ξM
E) = (2, 0.7071, 
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0.7071, 2),  and (ωM
C, ωT, ωV, ωM

E) = (0.04, 0.15, 0.4, 0.4); and (ii) δt = 15 min, with 
the tuning parameters (ξM

C, ξT, ξV, ξM
E) = (2, 0.7071, 0.7071, 2),  and (ωM

C, ωT, ωV, 
ωM

E) = (0.004, 0.15, 0.4, 0.04). It can be observed that the performance of the control 
system with a δt = 5 min is adequate and fast, and the required effort on the control 
inputs is smooth. In the case of δt = 15 min, the nominal state is still maintained; 
however, it takes a longer settling time and requiere more control effort (even the 
temperature and volume controllers) than in the case of frequent monomer mesurement. 
In fact, it must be said that for a δt greater than 17 min, the control system does not 
achieve stabilization; but, in the ideal case of non parametric errors, the control system 
does with a δt up to 25 min. 
 

Figure 2. Control System Performance 
 

283



  Hernández-Escoto et al. 

Although this control system only deals with the variables related to the production rate 
and safety (M, T, V), it fits to say that the control of the product quality is also achieved, 
but its convergence rate, and offset, is not handled in a direct form, as the I-dynamics 
(Figure 2). In the light of the attained performance, the approach can be extended to 
control the product quality; for example, driving the initiator feed rate or a transfer 
agent with discrete-delayed measurements of the average molecular weight of the 
polymeric product. 

Conclusions 
In this work, it was designed a control system for a polymerization reactor whose linear 
control elements had the capability to adequately ensure its nominal operation, 
managing continuous-instantaneous and discrete-delayed measurements. The control 
system includes a systematic model-based tuning scheme that takes in account the 
sampling time, and whose conventional parameters provide insight into desired 
convergence rates. This system of linear controllers presents the least implementation 
cost, and a comparison of its performance with systems of nonlinear controllers would 
be worthwhile.  
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