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ABSTRACT: For sustainable production and consumption,
emerging green technologies must be optimized in order to
achieve a minimal environmental impact, a maximal economic
impact, and dynamic behavior. The need for environmentally
sustainable production and consumption is now one of the main
developmental goals. To enable a more sustainable production in
the chemical sector, new green chemical technologies from
renewable feedstock such as furfural (a chemical compound
produced from biomass used as a building block in the production
of biofuels) are currently being developed. Furfural, a versatile
chemical, is also employed as a solvent, an extractant base for
fungicides, and a platform for other compounds. In this work, the
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simultaneous optimization of design parameters and control properties, which are highly relevant targets according to the principles
of green chemistry, is performed within the reaction zone in the production process of furfural from biomass. The Differential
Evolution with Taboo List algorithm (DETL) is used to carry out the multiobjective optimization. The total annual cost (TAC),
eco-indicator 99 (EI99), and condition number, which represent the objective functions for a sustainable process, are combined as
economic, environmental, and controllability criteria, respectively. Based on the results, the operating conditions found allow for an
acceptable furfural production of 2014.4 kg/h, which reduce costs by 39% and its environmental impact by 42% in a system with

satisfactory control properties compared to a case base.

1. INTRODUCTION

Over the past decades, the growing scarcity of fossil fuels and
the expanding problems of greenhouse gases have raised
concerns in the energy sector and in society as a whole.
Therefore, research on the development of technology to
exploit potential renewable fuel sources has become the focus.
Biofuels are a promising initiative, especially in the transport
area, which ensure a decrease in environmental problems while
providing an opportunity to support the agricultural sector in
certain regions.1 As a result, the improvement of alternative
renewable resources mainly biomass (the most abundant
feedstock on Earth) has been fiercely promoted in recent years
within the context of biorefineries.” One of the limitations of
biomass conversion is that separation and purification
technologies account for about 25 to 50%’ of the total
production costs of biorefineries. Consequently, there is still a
need to improve the process design and operation of
bioprocess technologies to decrease the total production cost
while also aiming to reduce the environmental impact.
Biomass energy is produced from agricultural or forestry
waste materials and energy crops harvested for this specific
purpose. Biomass, composed of cellulose, lignin, and hemi-
cellulose, represents more than 70% of Earth’s biomass. It is for
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this reason that the utilization of this type of biomass is of
special interest. Furfural is a key component derived from
lignocellulosic biomass that provides a wide range of products
with high added value such as fuels, polymers, lubricant oils,
pesticides, insecticides, and composite materials, among
others.”

The production of furfural is not new. Furfural, along with
acetic acid and ethanol, is one of the oldest renewable
chemicals produced from biomass; therefore, it does not have a
petrochemical synthesis.”® Furfural is produced from the
dehydration of pentoses contained in the lignocellulosic
biomass.” Industrially, there are two implemented technologies
for furfural production. The first technology implements the
depolymerization of pentosans and then the dehydration of the
pentoses in furfural in two different steps that involve different
process equipment. In the second technology, a single step
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carries out the depolymerization of pentosans in xylose, which
is then dehydrated to furfural in a single vessel; this second
option offers advantages in the economy of the process,
avoiding an extra step in the biomass conversion with a lower
furfural yield.®

Despite efforts made in the investigation of the furfural
reaction mechanism, there is no well-established route toward
maximum performance due to various side reactions that
decrease furfural performance,” and few studies have
researched efficient furfural production under different
routes.'”"" In the same line, the design of a furfural separation
zone has been reported.'” The importance of considering
sustainability issues early in the design of intensified processes
can help to differentiate between processes that are easy and
processes that are difficult to operate. According to Jiménez-
Gonzilez et al."®> and Thomassen et al,'* “green metrics”
should be incorporated when designing a process toward the
broader goal of environmental sustainability. Among these
green metrics, the aspects of economic, environmental, and
process control should be highlighted. Green chemistry
principle #11 expresses a desire to have a real-time process
analysis and monitoring in place. The aim of this principle is to
prevent waste and safety issues (reflected in control properties)
by identifying process excursions as they occur. By doing so, it
allows process parameters to be modified in case the excursion
might need to be reversed without any subsequent impact on
safety and the final product’s quality. Real-time analysis and
process control are necessary to carry out this action. In this
sense, there are no reports of the reactor optimization for
furfural production under green chemistry concepts. In
contrast, traditional chemical processes are designed by a
sequential approach involving a sequence of decisions and
evaluations. These processes are initially designed based on
steady-state economic and sustainable calculations followed by
the synthesis of a control structure that is generally based on
heuristic controllability measures. Hence, the control system
design only begins once the main features of the process have
been established. This approach may sometimes lead to
iterations between the process design and the control system
design. It may also lead to poor dynamic operability in the face
of disturbances and uncertainties. Although a closed-loop
control system can be used to tackle the undesirable factors,
including external disturbances and parameter or model
uncertainties that affect the chemical process, studies in the
literature'” have shown that process design decisions may have
a large impact on the process dynamics and the capability of
the control systems. Improving the dynamic performance and
functionalities of control systems is a key element in this case.
Therefore, it is valuable and important to investigate the
interactions between the process design and process control
design and process operability to improve the dynamic
performance of chemical processes at the early design stage.
Optimization-based simultaneous design and control have two
facets, the first one being research in basic principles, theories,
and tools and the second one being research related to specific
application domains. The strength of the optimization-based
simultaneous design and control is the interplay between these
two sides.'® Therefore, in the case of the reactor for furfural
production, the incorporation of these aspects addresses the
reduction of excessive water use and high-energy consumption
in the best dynamic behavior. In this work, the TAC as
economic criteria, EI99 as environmental criteria, and
condition number as controllability criteria were combined

within a stochastic multiobjective optimization. Moreover, the
model proposed shows the dynamic behavior of the system, yet
there is no literature where the optimization of design
parameters and simultaneous control for the furfural reactor
are reported in an environment of sustainability. The
assessment of the economic, environmental, and control
potential is of major importance in the development of
technology. In addition, it will only become more important as
a transition is made to a more sustainable way of production
and consumption. For this transition, information on the
conductors of environmentally sustainable technologies is
indispensable. The Differential Evolution with Taboo List
(DETL) method is used to solve the mathematical problem in
order to design the process including sustainability guidelines.
By doing so, it aims to improve the reactor productivity in the
reaction zone in the furfural production process from a more
robust point of view. This aspect will help to reduce the use of
excessive water and high-energy consumption during the
subsequent processes related to furfural separation.

2. MODEL APPROACH

Furfural is obtained from biomass rich in pentoses. There are
two steps in the reaction of furfural production. In the first
step, xylan (from the hemicellulose as a raw material) is
hydrolyzed to form xyloses. These xyloses are later hydrated to
form furfural. Both reactions are catalyzed by an acid medium
such as sulfuric acid (H,SO,) or hydrochloric acid (HCI)."”
The required acidity of the medium depends partially on the
temperature, so both factors play an important role in the
reaction kinetics for furfural production.

Different reaction models for furfural formation are reported
in the literature, which vary from simplified to complex
kinetics. The more complex model approach focuses on xylan
fraction decomposition, which is divided into two parts: there
is an easy and a hard way to hydrolyze xylose that then results
in the formation of furfural, as a decomposition product.'® On
the other hand, Lu and Mosier'” proposed two reaction
models, the first one being a two-phase model similar to the
one proposed by Miki-Arvela et al."® and the second model is
a Saeman-type reaction where hemicellulose hydrolysis is held.
It is then followed by two successive first-order reactions.”’ In
addition, Lavarack et al.”' proposed three reaction models
from a simplified Seaman-type reaction model to a complex
reaction model like the one proposed by Miki-Arvela et al.'®
Lavarack’s model has the potential to provide similar results as
it considers furfural in decomposition products. Recently,
Bamufleh et al.”* have proposed a simpler approach where
furfural production can be represented as several first-order
irreversible reactions under the assumption that the existing
xylan in the raw material is susceptible to hydrolysate. Similar
to the model proposed by Bamufleh et al.,* there are other
works that show that the decomposition of xylan into xylose
and other subproducts can be represented by a first-order
irreversible reaction model.”***

One of the difficulties of using kinetic models to describe a
reaction evolution lies on the ability to identify the model
parameters from the available experimental data. In this
research, preliminary calculations showed the need to simplify
the model using the available experimental data. The
experimental data is taken from Bamufleh et al** For the
experiments, the date palm tree stem is used as a raw material
with a composition of cellulose (glucan) 66.6 wt %,
hemicellulose (xylan) 14.52 wt %, and lignin 13.72 wt %.

https://dx.doi.org/10.1021/acs.iecr.0c02261
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The model proposed in this contribution is analogous to the
one proposed by Saeman’® for the hydrolysis of cellulose
catalyzed by dilute sulfuric acid. Here, furfural is obtained from
xylan and furfural reacts to form the correspondin%
decomposition products such as methanol and acetic acid.'
For simplicity, to increase identifiability parameters, decom-
position products are condensed in a unique expression as
shown in eq 1.

xylan 5 furfural 3 decompostion product (1)

Equation 1 shows a simplified model for the formation
reaction of furfural and decomposition products. There is a
two-step reaction where in the first step, hydrolysis occurs to
produce furfural followed by the degradation of furfural to
decomposition products. In this model, the reaction rate r is
given by eq 2, including temperature and acid concentration
influence. Moreover, kinetic parameter values need to be

defined.
r= kOChbexp(_E/ RT) (2)

Due to the nature of the simplified model, a parameter
estimation procedure is required. According to eq 2, there are
six parameters to be estimated: two pre-exponential constants
(ko1s ko), two tunable parameters (by, b,), and two activation
energy parameters (Ey, E,). For these six parameters, values
from zero to infinite are considered as estimated limits. In
order to perform the kinetic parameter tuning, batch
experimental data obtained by Bamufleh et al.>* were extracted
and normalized to compensate differences in scales. The
kinetic model parameters are estimated using the least
weighted squares criteria using the trust-region-reflective
method for constrained optimization.”® This procedure
requires the solution of the batch reactor model through the
method for stiff differential equations. The model is
implemented and solved in Matlab 2017b.

The model quality is assessed using reproducibility and
identifiability analysis through the determination coefficient,
correlation analysis, parameter sensitivity index, and collinear-
ity index.”” According to the reaction structure using a
modified Arrhenius model, temperature T [K] and acid
concentration Cy [wt %] play an important role in the
reaction rate behavior. The operational constraints were 373—
413 [K] for temperature and S—1S5 [wt %] for acid
concentration. Both constraints were taken from Bamufleh et
al 22

To produce furfural, a continuous isothermal stirred tank
reactor (CSTR) is employed as shown in Figure 1. At the

Fin
Cin-xylan
o o>
Fout
Cxylan
Crurfurat
Cpp

Figure 1. Representation of the CSTR reactor for furfural production.

entrance of the reactor, there is a feed flow F,, [kg/L] and the
fraction of xylan at the entrance of the reactor Ci, 1., [Wt %],
which depends on percentages of composition of lignocellu-
losic material contained in the raw material. Two other
variables to consider are the temperature T [K] and the
concentration of sulfuric acid Cy [wt %], and the manipulation

of the acidity conditions and temperature play an important

role in the reaction kinetics for furfural production.” Within

the reactor, it is important to study the behavior that it will

have during the reaction time: first, the degradation of raw

material Cy,, [kg/L], as well as the formation of furfural

Crufurat [kg/L] and decomposition products Cpp [kg/L].
The global mass balance is given by eq 3

input — output + generation = accumulation 3)

Rewritten eq 3 in terms of process variables is expressed as
indicated in eq 4. It should be noted that when dealing with a
global mass balance, the generation term is equal to zero.

dpV
E —pE = —
p n p out dt (4)

For this case, the system presented is a diluted solution, so a
constant density is expected; in doing so, the system is
governed by the amount of water present. Thus, the overall
mass balance is expressed as indicated by eq S

F—F = dv

in out dt (5)

For a continuous reactor, the input is equal to the output.
This shows that there will be no volume variation with respect
to time, so the volume will be consistent, making a mass
balance by component. For xylan, eq 3 is taken as reference.
The terms of variables corresponding to xylan are substituted,
reaching the expression shown in eq 6.

dvc
xylan
E Cin—xylan - Foutcxylan + rxylanV = dt (6)
where F,C;, _ 1., represents the input, F,C,,, represents the
output term, rxylmV represents the generation where the term
dvc
'yl 1S given by eq 2, and finally T:YI““ represents the

accumulation term. Having a constant volume in this case, it is
taken out of the differential arriving at an expression, shown in
eq 7.

dv dnyIan

m— +V
dt dt

Pi'ncin—xylan - E

out

C

xylan + rxylanV = nyl

7)

In eq 7, the term ‘Z—‘: is replaced by eq 4, as is shown in eq 8.

Pi'n Cin —xylan

- E

out

C

xylan + rxylanV

dC
xylan
= nylan(Fin - E)ut) +V dt

(8)
Performing the corresponding mathematical treatment, the
mass balance for xylan is represented by eq 9.
dcxylan — i ( C
dt \%

in—xylan — nylan) + rxylan (9)

For the rest of the components, the mass balance was
obtained following the steps shown from eqs 3 to 9 and by
substituting the corresponding component terms.

The global energy balance was performed in Aspen Plus. To
predict the energy required by the system, the NRTL-HOC
model was used to predict the liquid—liquid—vapor phase
formed.”” The energy balance of the system can be represented
according to eq 10.

https://dx.doi.org/10.1021/acs.iecr.0c02261
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Ehy + Qg — VHy - L'hp— L"hpn=0 (10) parameters in furfural reaction processes is useful for possible
in

where hj; represents the enthalpy of the feed flow, V is the

vapor flow phase formed, Hy is the enthalpy of the vapor
phase, L' and L" are the two liquid phases formed, k;' and h;"
are the two enthalpies corresponding to the two liquid phases,
respectively, and Qg is the heat duty. Here, Qg was considered
to be zero.

In order to model the reactor in the production of furfural, a
software interaction between Microsoft Excel, Matlab, and
Aspen Plus is used (Figure 2). First, initial values for the input
variables are taken from Microsoft Excel and sent to Matlab
where the mass balances are programmed. Once the mass
balances are solved in Matlab, the values of the output
variables are sent to Microsoft Excel to compile the output
results with the input data. Afterward, the data collected is sent
to Aspen Plus to calculate the energy balances. Once the
energy requirements of the system have been obtained, this
data is stored in Excel to start the reactor optimization (in the
following section, a detailed explanation of the thermody-
namics used in Aspen as well as the optimization methodology
is given).

Usually, most of the optimization problems focus on finding
design variables that minimize the total cost of the process and
considering control properties independently. Flores-Tlacua-
huac and Biegler”™ showed that the search for design
conditions and control properties in a reaction system turns
out to be a relevant optimization problem that needs to be
resolved simultaneously. It is proven that design and control
properties must be performed simultaneously since control
properties affect the base design case.

According to Flores-Tlacuahuac and Biegler,28 the reactor
model is an appropriate case where control and design
parameters are optimized simultaneously. Furthermore, the
reactor system described as a case study presents continuous
variables related to the design (i.e., feed flow, temperature, acid
concentration, volume, and relation of solid and water). The
model proposed features strong nonlinear behavior around
optimal design regions as well as degrees of freedom.”®

The model proposed in this work shows the dynamic
behavior of the reaction system, yet there are no reported
works in the literature where the design parameters and
simultaneous controls are optimized for furfural reactors. In
addition, simultaneous optimization of design and control

15993

industrial implementation.

3. OPTIMIZATION

As stated before, the proposed model is an appropriate case to
be optimized since the reactor’s design parameters and control
properties are considered. It is also important to mention that
the design of the studied reactor shows problems related to the
immense consumption of water and energy to produce furfural.
Moreover, because it is a bioproduct, the design of the
equipment should be optimized under sustainable metrics and
green chemistry standards. Likewise, the optimization of
control properties will result in a sustainable and green process
by increasing strict standards for furfural production and
providing economic competitiveness by maximizing the
efficiency of the process. Reliable indices are needed in an
optimization of a process in the assessment of green chemistry.
Although a number of reviews about green chemistry indices
are available in the literature,””>" there are some works that
report indices dealing with factors involved in evaluating the
Process Greenness altogether. Moreover, there are few general
agreements on methodologies and metrics to evaluate green
chemistry. Therefore, a literature and standards analysis has
been conducted in the search for green chemistry metrics,
including advantages and limitations associated with their
use.’’ It is expected that the analysis framework developed in
this paper might contribute to the use of the indices to evaluate
more than one aspect of green chemistry in order to integrate
it into a based optimization on the Process Greenness.

The indices proposed in the development of green chemistry
in this work are primarily related to the economy (TAC), the
environmental impact measured (EI99), and the process
controllability with the condition cumber (y*). These indices
are taken into account since they represent the 12 principles of
green chemistry.”’ On the other hand, Rafiei and Ricardez-
Sandoval®>** have proven how to integrate different metrics as
the indices can improve the sustainability due to inherent
interconnection between different aspects of a process such as
environmental impact, safety, profitability, energy-efliciency
issues, etc. Thus, the contemplation of different metrics such as
environmental impact, controllability, and economic issues
provides an extensive outlook, which can help in the decision-
making procedure. Multiple decision variables that affect
operability of the process, lifetime of the project, and

https://dx.doi.org/10.1021/acs.iecr.0c02261
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economics of the process are simultaneously and commonly
evaluated.*” Finally, the indices considered in this work are
described below:

3.1. Economy of the Process: Total Annual Cost
(TAC). The TAC is an excellent indicator of the economy of a
process since it relies on the product and on the characteristics
of the process exclusively for informational and comparative
purposes.”* When the process is under development, it is
necessary to have an estimate of the economic potential of the
process. To achieve this, the TAC is used to quantify the
economic performance of the process using eq 11.

capital cost
TAC =

+ operation cost
investment recovery time (11)

The Guthrie method was used to calculate the TAC.*> The
reactor cost and auxiliary equipment cost are included in the
capital cost. Here, carbon steel is considered a construction
material. All the parameters for the equipment and the utility
costs were taken from Turton et al.*® For the operating cost,
the cost of steam and electricity were considered, assuming
8500 h/y operation. 10 years is employed for investment
recovery time.

3.2. Environmental Impact Measured: Eco-Indicator
99 (E199). EI99 is a methodology proposed by Geodkoop and
Spriensma®” as a quantitative life cycle analysis evaluated from
beginning to end. This methodology accounts for the origin of
the raw material in the process, processing, and degradation. It
is based on the use of standard ecological indicators, which are
numbers that express the total environmental burden of a
product or a process. The higher the value of the indicator, the
greater the environmental impact. This method is based on the
evaluation of three categories:

The first category is human health; this set represents the
span of an illness and years lost due to premature death
because of environmental causes. The evaluated points in this
category are carcinogenic effects, climate change, destruction
of the ozone layer, radiation, and respiratory effects. The
second category is the quality of the ecosystem, which shows
the effects on different species. The effects it evaluates are eco-
toxicity, acidification, and eutrophication due to land use. The
third category is the depletion of resources, which refers to the
surplus energy needed to extract mineral resources and fossil
fuels. This part assesses fossil fuels and mineral extraction.
Mathematically, EI99 can be expressed as shown in eq 12.

EI99 = ) o-Cra
i (12)

where @ represents the weight factor for the damage, C;
represents the impact value for category i, and « represents
the amount of what is being evaluated. The unit used for EI99
is the eco-point, where 1 eco-point is representative of one
thousandth of the annual environmental burden of an average
European inhabitant.**?”

The EI99 index is a useful method to evaluate the general
environmental impact related to chemical processes. It has
been demonstrated in a study reported by Quiroz-Ramirez et
al,,*® where during the design phase, this methodology leads to
significant improvements and waste reductions compared to
the industrial installed processes. In the case of a reactor, the
steam used to supply heat and the steel needed to build the
equipment are the factors that have the biggest influence on
EI99. Equation 12 is adjusted considering steam and steel

supply as factors to be weighted. Equation 13 indicates the
calculation of EI99 corresponding to the reaction system.

EI99 = Z w-Cysteam + Z - C;steel 1)

Table S1 shows the impact categories for EI199, as well as the
values used in this study. These values were taken from the
work reported by Geodkoop and Spriensma.”” These values
are associated and correspond to the use of steel for the
construction of equipment and the use of heating steam.

3.3. Process Controllability: Condition Number (y*).
The singular value decomposition (SVD) is a mathematical
method used in the multivariable control theory as a measure
of control properties of a dynamic system as a tool to quantify
multivariable directionality as a function of frequency. The
magnitude of singular values is associated with the system gains
as the direction of the inputs is varied. This might relate to the
“force” required by the inputs to move the system in a certain
direction. On the one hand, the minimum singular value (o)
is associated with the direction where the system has more
difficulties moving to. On the other hand, the magnitude of the
maximum singular value (o*) indicates the easiest direction
the system will move to.*'

In order to maximize furfural concentration, it is necessary
to have a higher consumption of raw material as well as to
minimize the decomposition product concentration. There-
fore, Cyyians Crusfuray and Cpp are selected as control variables.
According to this model, xylan consumption equations, furfural
equations, and decomposition product production equations
are dependent on feed flow, temperature, and acid
concentration. Therefore, F,, T, and Cp are selected as
manipulated variables.

The degree to which ill-conditioning prevents a matrix from
being inverted accurately depends on the ratio of its largest to
smallest singular value, a quantity known as the condition
number (y*). The S matrix obtained from SVD is

0,

Ou

From both aforementioned values, y* can be obtained, and
it is defined as the quotient between the maximum singular
value and the minimum singular value as shown in eq 14.

*

c
* = 2
4

h Oy (14)

The condition number quantifies the sensitivity of the
system to inaccuracies in process parameters and mode errors.
Systems with small condition numbers present better control
properties. Therefore, it is necessary to identify systems with
high values of minimum singular value (6+) and low values of
the condition number (y*). It is expected that these systems
will have the best dynamic behavior. It is necessary to reiterate
that the association of high condition number is due to ill-
conditioning with poor control properties.

The obtained results are a function of frequency, which is
why the cumulative value proposed is a helpful indication of
what happens in the entire spectra. Shimizu and Matsubara™*
discussed the direction of combined disturbances in the
frequency domain using the singular value decomposition.
Skogestad and Morari*’ presented a similar analysis but also
considered the direction of an individual disturbance. They
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stressed that in multivariable systems, some disturbances may
be difficult to reject if they are in the "bad” direction compared
to the direction of the plant, and to quantify this, they
introduced the disturbance condition number regarding input
frequency, having better control properties at low frequency
values.

For systems in a dynamic state, it is possible to evaluate the
condition number (y*) as a function of the frequency.
Cabrera-Ruiz et al."* proposed the methodology in which it
is possible to evaluate the condition number in the entire
domain of the frequency using the area under the curve,
corresponding to a cumulative index.

Although the condition number is reported numerically, its
interpretation is qualitative. It is not possible to know how
good the control properties of a design are by the simple
numerical value obtained. Its representation makes sense when
compared with other designs. The design with the lowest value
of condition number, compared to all comparative designs, is
the one that presents the best control properties. Because of its
qualitative representation, it is not possible to define a value
from which a design has good control properties; therefore, in
an optimization problem, the condition number should be
considered as an index and not as a constraint.

3.4. Multiobjective Optimization Method. The method
selected for optimizing the reactor is the Differential Evolution
with Taboo List, also called DETL. The DETL is a stochastic
global search technique where the search for the global
optimum is carried out in all the feasible regions by an iterative
procedure. The method was proposed by Srinivas and
Rangaiah.** It has been proven to have several advantages
over other optimization methods. For example, the DETL has
a faster convergence of global optimum vicinity, smaller
computational efforts, and less computational time to solve
nonlinear and nonconvex problems than other methods such
as genetic algorithms or simulated annealing. Other advantages
of DETL are its abilities to memorize solutions and avoid the
evaluations of solutions previously tested. These abilities
reduce the computational time required to obtain the optimal
solution.””*® The Differential Evolution with Taboo List has
been applied successfully to a wide range of different problems
in chemical engineering. For example, Bonilla-Petriciolet et
al.*’ have evaluated the estimation of parameters of vapor—
liquid equilibrium for different mixtures and have obtained
outstanding results. Sharma and Rangaiah** applied the DETL
optimization method for designing a biodiesel production
process considering different objectives as profit and temper-
ature of equipment. Ponsich and Coello™ have used the DETL
for the solution Job-Shop Scheduling Problem (JSSP) with
exceptional results. Ramirez-Marquez et al.>’ applied the
DETL method for tuning PI controllers in distillation columns
obtaining distinctive results as well compared to traditional
methods. Finally, Contreras-Zarazua et al.’’ and Vazquez-
Castillo et al°” have implemented the DETL method
successfully in the design of reactive distillations and
conventional distillation columns, respectively, considering
economic and controllability issues.

The DETL method consists of four basic steps based on the
biological evolution theory. These steps are

(1) Initialization step: In this step, a random vector of
possible solutions (x;) is generated. The values of this
random vector are constrained to the upper (max) and
lower (min) bounds of each decision variable (7). These

decision variables are arranged into two D-dimensional
vectors, by, and b,,. Finally, the vector of variables (x;)
is generated as follows

‘xin = randi(ol 1)'(bi,ma_x - hi,min) + bi,min (15)

where the rand (0,1) is a random generator constrained

in the interval 0,1 and # is the number of generations
considered to solve the optimization problem.

(2) Mutation step: This step consists of the generation of
new vector sets, also known as donor vectors (v/*!). The
donor vectors (v""!) are created from three different
vectors x, «x, and x. randomly chosen for each
generation n. The mutation step can be summarized
with the next eq 16

v = o+ F(x — (16)

1

where F is called differential weight, and it takes values

in the continuous interval of 0—2. Differential weight
provides stability and avoids the standstill of methods in
similar solutions.™

(3) Crossover step: In the crossover step, the donor vectors
(v™*') are combined with the vector of variables (ix;)
generated during the initialization step. The objective of
this step is to generate a trial vector (u""'). The
crossover is carried out through a binomial scheme
where the method randomly decides how each variable
is exchanged with the donor vector. The mathematical
formulation of the crossover step is as follows

1 if (randi‘j[O, 1]) < Cr

x; otherwise (17)

(4) Selection: Lastly, in the selection step, sets of vectors
with the best fitness function values are chosen to be
part of the next generation. This selection is executed as
follows

ult! ifﬁt(uf“) > fit(xit)

1
XiG+1 =)
X otherwise (18)
Additional DETL information is provided by authors

such as Srinivas and Rangaiah.*> The parameters used
for DETL are given in Table S2; these (parameters were
taken from previous work of Rangaiah.*® The parameters
have been proven to work exceptionally well with
nonlinear problems providing great results.”*

3.5. Multiobjective Optimization Problem Statement.
In this work, the TAC, EI99, and condition number are the
objective functions to be minimized. Based on the previous
information about the indices, a general mathematical
expression for the objective function and its respective decision
variables involved in the optimization procedure are shown in

eq 19 as follows
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min[TAC, EI99, y*]

f(LSR’ P;n’ T’ CH’ ‘/0)
capital cost

- payback period
+ operating cost

f(LSR’ En’ T’ CH’ ‘/0)
w-C;-steam + Z w-Cy

i i

steel
e
f(LSRr E, T, Cy, Vo) =
Oy
subject to:
e
rank(K) = n (19)

where LSR is the liquid solid ratio, F;, represents the feed flow,
T is the reaction temperature, Cy is the sulfuric acid
concentration, and V,, is the volume of the reactor. The
optimization problem is constrained in order to produce 2000
kg/h of furfural, a typical production size for a furfural
production plant.'” So, in this work, y,, represents the
production vector obtained from furfural, while x, is the
vector that represents the required furfural production of 2000
kg/h. Bigger plants are not recommended since they are
required to transfer greater amounts of heat and utilize greater
equipment.

The second constraint (rank (K) = n) shows that the
optimization problem is limited to analyzing only designs that
comply with Kalman controllability criteria. It can be known if
a system has complete controllability from the construction of
Kalman controllability matrix K, which is constructed as shown
in eq 20.

K = [B'AB:A’B:-- A" 'B] (20)
where A and B represent the state-space and n represents the
order of the system indicated by the number of state variables
in the system. The system is completely controllable if the
range of the controllability matrix is equal to n.*' This
constraint avoids the evaluation of a noncontrollable design,
thus reducing the computational time.

Finally, the bounds of decision variables considered in this
work are reported in Table 1. These bounds were determined
based on physical restrictions reported by Turton et al.*® and
the experimental data conditions provided by Bamufleh et al.””
This optimization problem was solved using the DETL

Table 1. Design Variables Considered for the Multiobjective
Constrained Optimization

variable type variable symbol range unit
liquid solid ratio  continuous LSR  1-15% mL/g
feed flow continuous F, (1 X 10° to kg/h

6 x 10°)*
temperature continuous T (373—413)* K
acid continuous Cy (5-15)* wt %
concentration

volume continuous (300—520000)>° L

15996

method due to its availability to solve strong nonlinear
equations with a low computational cost.

3.6. Multiobjective Optimization Implementation.
For the implementation of the DETL method, it is necessary
to use a hybrid platform, which implies a link between Matlab,
Microsoft Excel, and the Aspen Plus process simulator. The
optimization algorithm is programmed in Excel through a
Visual Basic macro as indicated in Figure 3.

1 4
2 ng 3 @
—

Figure 3. Software interaction used for the hybrid optimization
platform.

First, the design variables are specified in Microsoft Excel.
Using the DETL algorithm programmed in Excel through a
Visual Basic macro, the initial values that begin the
optimization are randomly selected according to the method-
ology provided in the last section.**

(1) These initial values are sent to Matlab where they are
evaluated, and the kinetic model is solved. The system
controllability is used as a first checkpoint to determine
if a design can pass onto the next stage of optimization.
Controllability is defined by Kalman as the process
ability to reach and maintain the desired equilibrium
value, so a system is in a “fully controllable state” if it is
possible to transfer the system from an arbitrary initial
state to any other desired state in a finite time interval.*'
This can be determined if the rank of the Kalman
controllability matrix is equal to the number of state
variables, as explained above. When this is the case, the
resulting state vector is returned to Microsoft Excel to
collect the data. Otherwise, according to the definition
of Skogestad and Postlethwaite,”" if the rank of the
Kalman controllability matrix is different from the
number of state variables, the system is considered
uncontrollable. A mode is called uncontrollable if none
of the inputs can excite the mode. When this occurs, the
program is reset to the first step.
The resulting mass balances are then sent to Aspen Plus,
where the analysis of energy requirements of the process
is performed. In this step, Aspen Plus is used to predict
the liquid—liquid—vapor equilibrium that exists in the
mixture of components. The thermodynamic model
used is the nonrandom two-liquid model with the
Hayden—O’Connell state equation (NRTL-HOC),
which considers the two liquid phases, the dimerization
characteristics, and the interaction of mixtures with
acids.>

The advantages of implementing Aspen Plus in this
step of the optimization are that it reduces calculation
times and provides the properties, which are useful in
the prediction of balances.
The resulting vector obtained in Aspen is returned to
Microsoft Excel. Finally, taking all the resulting data, the
values of the objective functions are analyzed, and new
values are proposed for the decision variables according
to the DETL algorithm.

(2)

)

(4)
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3.7. Methodology Summary. In this section, a method-
ology summary is presented. Figure 4 explains the necessary

Step 1: Kinetic model proposal based on

!

bibliographic references

l

Step 2: Reaction rate equation proposal based
on kinetic model

}

Step 3: Collect experimental data and
experimental limit conditions

I e )

Step 4: Determination of kinetic parameters — lgm — — —

l

Step 5: Statistical analysis of kinetic parameters

s and experimental

)

g
2
5
&

Tuning Kinetic Parameters

11111

Step 6: Multi-objective Optimization Process
according to Fig.2

i —

Optimization

DR

‘ Step 7: Pareto form analysis ‘

END

Figure 4. Methodology summary.

workflow needed to achieve multiobjective optimization for a
furfural production reactor. It is presented systematically from
the experimental data modeling the optimization process, both
of which are explained in detail above.

4. RESULTS AND DISCUSSION

In the following section, the results obtained are presented.
First, the analysis of the results obtained from the kinetic
parameter adjustment is presented. A comparison of the
proposed model to the experimental data reported is
presented. Subsequently, the analysis of the designs obtained
in the optimization is shown, being the minimization of costs,
environmental impact and condition number as the control
criterion its main objective functions. Finally, the comparison
of the optimal design between two designs at the extremes of
the Pareto fronts is presented.

4.1. Tuning Kinetic Parameters. The results of the
practical parameter identification procedure are shown in
Table S3. Taking the experimental data from the literature
reported by Bamufleh et al,”* the kinetic parameters are
estimated using mathematical and statistical tools according to
the methodology proposed by Prado-Rubio.”® The method-
ology used consists of a numerical method for large-scale
optimization based on the interior reflective Newton method
for nonlinear minimization subject to bounds. This method is
available in Matlab using the function “Igscurvefit”.’® The
developed kinetic model is employed to achieve the best
furfural productivity, with lower cost, environmental impact,
and best control properties.

From the statistical analysis, just 29.83% (Parameter
Identifiability fraction) of the parameters reported by Bamufleh
et al.”> have an impact that represents the trend of the
experimental model. Therefore, in the simplified model
proposed in this work, the reduction of the number of
parameters is considered so that each estimated parameter has
a greater weight over the model, thus better representing the
experimental data reported in order to avoid over fitting.

Figure S1 shows different experiments (Ist to 7th) for
furfural formation (black circles) compared to the trend the
graph gives when using estimated kinetic parameters
(indicated in the blue line). For the reported experiments,
Bamufleh et al.** reported that different combinations of T, Cy,
and LSR were made to represent the trend of the experimental
data. The red dotted lines correspond to the nonsimultaneous
functional confidence interval of the predictor. It can be seen
that in the 1st, 4th, Sth, 6th, and 7th experiments, the model
reproduction is acceptable achieving a global adjustment of the
estimated parameters with respect to the experimental data of
96% (r*,4)- In the 2nd and 3rd experiments, the reproduction
of experimental data shows some problems. The experimental
data is outside the predictor bound. Interestingly enough, the
estimation results confirmed that the determination coefficient
is a weak index to assess the nonlinear model capability to
reproduce experimental data. Therefore, the following
indicators are important.

By analyzing relative sensitivity of the model output toward
each identified parameter (shown in Figure S2), it can be
observed that the most representative parameters are the
activation energies and the acidity power; thus, these are the
parameters that can be estimated in a more reliable way from
the experimental data. This is confirmed by the acceptable
parameter confidence intervals. The collinearity index indicates
in a quantitative way which parameters are to be estimated
from the available experimental data and hence the degree of
model overparameterization and/or information quality of the
experimental data.”” For the purposes of this work, although it
was impossible to obtain the best parameters, these parameters
that were estimated can be used in the design of a reactor to
produce furfural and its decomposition products. To improve
model parameters significance, interpretability and substantial
experimental work must be performed.

4.2. Multiobjective Optimization. In this section, the
main results obtained from the simultaneous optimization of
the design and control parameters of a reactor to produce
furfural are presented. The economic, environmental, and
control criteria as objective functions are considered as well.
The results obtained comply with the production restriction of
furfural (2000 kg/h). The optimization process required 537 h
in a Dell Power Edge T420 computer with an Intel Xeon ES-
2420 processor with 2.2GHz and 16 GB RAM.

To represent the main results of the solution in the case of
the reactor in furfural production from biomass, Pareto fronts
are used to identify the best option to produce furfural with
respect to the multiobjective function. The points studied on
the Pareto fronts correspond to the 120 individuals of the 710
generation (last generation). After this generation, there does
not seem to be an improvement in the objective functions,
which means that the results obtained are in the region of the
optimal solution.

Each point presented on the Pareto fronts shown in Figures
5—7 represents a different design with its own operating
conditions. As a result, an analysis of the optimal design is
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Figure S. Pareto fronts between the condition number (CN), total
annual cost (TAC), and furfural yield.
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indicator 99 (EI99), and furfural yield.

Yield (%)
2.46E+9 ‘

2.45E+9 | «
2.44E+9
= op > cp
5 243649 ! Soo®
©@>
Z 2.42E+9
< 241E+9
2.40E+9 | o
2.39E+9
2.38E+9

29.00
27.00
25.00
23.00
g

21.00

19.00

17.00

T T T T T 15.00
9.65E+8 9.70E+8 9.75E+8 9.80E+8 9.85E+8

EI99 (Eco-points/yr)

Figure 7. Pareto fronts between the total annual cost (TAC), eco-
indicator 99 (EI99), and furfural yield.

the utopia point.”® The utopia point is obtained by minimizing
each objective function without regard for other objective
functions. The utopia point corresponds to an ideal and a
hypothetical solution, located on the edge of the Pareto fronts,
where two objectives can no longer be improved, so both
objectives are in equilibrium.’> The design marked OP
corresponds to the optimal design solution close to the point
of utopia according to what was reported by Wang and
Rangaiah.>”

To simplify the analysis and have a better interpretation of
the results, a comparison of the optimal design (OP) to the
two other designs located at the extremes of the Pareto fronts
(TP, CP) is shown in Table 2.

Table 2. Comparison of the Optimal Design Parameters for
the Reactors to the Designs at the Ends of the Pareto

OP (optimal
design variable TP design) CP
design specifications
reactor volume [L] 518201.39 518880.77 519838.69
diameter [m] 7.61 7.61 7.61
height [m] 11.40 11.41 11.42
operation specifications
temperature [K] 402.94 411.26 412.89
acid concentration 9.31 12.31 14.99
[wt %]
feed flow [kg/h] 705894.31 72842231 764967.93
liquid solid ratio [mL/g] 11.48 10.497 7.86
total energy consumed 5557091.53 5608969.50 5703259.25
(kw]
production
furfural [kg/h] 2013.82 2014.4 2082.25
decomposition product 1010.94 1731.6 2191.96
(kg/h]
furfural yield [%] 27.74 25.43 19.12
objective functions
utilities cost 2389.16 2411.46 2452.02
[million$ /yr]
equipment cost 0.331 0.322 0.294
million$/yr]
TAC [million$/yr] 2389.491 2411.786 2452.297
EI99 961.189 970.162 986.471
[million eco-points/yr]
CN 27.45 18.55 15.72

shown with respect to other designs positioned at the extreme
of the Pareto fronts. The two extreme points of the Pareto
fronts are determined in a convex case, giving importance to
only one of the objectives,”” setting the two analyzed
objectives in direct competition. For the designs located at
the ends of the Pareto fronts, TP represents the design with the
highest condition number and lowest TAC and EI99. The
design CP represents the design whose conditions are opposite
to those of TP with the lowest condition number and a higher
TAC to EI99.

In selecting the best design, the concept of Pareto optimal
and “utopia point” methodology were used. The Pareto
optimal is defined by the relationship between the gradients of
the objective functions, where the improving tendency of two
objective function points is in an opposite direction to all of
Pareto. The Pareto optimal point can be easily identified on
the curve segment. Pareto points have no other point that
improves at least one objective without damaging any other
objective; that is, it is nondominated. A unique point is called

To explain the data reported in Table 2, an analysis of the
Pareto fronts is performed, while the mass yield percentage is
shown in a color mapping. The corresponding diagrams are
presented afterward: (a) condition number (y*) vs TAC, (b)
TAC vs EI99, and (c) condition number (y*) vs EI99. It is
important to state that the optimal design is marked as OP and
that it corresponds to the same design point in the three Pareto
fronts shown below.

The Pareto fronts presented have a discontinuous trend.
This is because the designs obtained in these holes were
discarded as they were considered “uncontrollable” according
to the Kalman controllability matrix. A design is uncontrollable
when the combinations of input variables have no effect on the
outputs;*' thus, these points are discarded according to the
established restriction and do not enter the optimization.

4.2.1. Condition Number (y*) vs Total Annual Cost (TAC).
Figure 5 shows the tradeoff between the condition number
applied to a frequency range and the TAC. It is possible to
observe that there is a direct influence of the design parameters
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on control properties as well as on the TAC, which shows an
antagonistic behavior. In order to have the best control
properties, it is necessary to have an increase in the TAC.

To explain this trend, it is necessary to make a comparison
between OP, TP, and CP designs. Design variables (reactor
volume) and operation variables (temperature, acid concen-
tration, and feed flow) are both related to the costs and control
properties.

Relating the variables to the TAC, it is possible to see that
when there is an increase in temperature, it also represents an
increase in the energy duty needed to heat the reactor that
implies an increase in operating costs and heating services.
This produces a direct increase in the TAC. In the case of acid
concentration and feed flow, when there is an increase in both
conditions, it will also generate an increase in the utilities cost
of the process, which also generates a direct increase in the
TAC. From Table 2, it is possible to observe that the CP
design presents an increase in temperature, acid concentration,
and feed flow compared to the OP design. By having an
increase in these variables, the total energy consumed increases
and therefore so do the utilities costs. This has a direct impact
on the TAC. In the case of the TP design, the opposite
scenario is presented. By having a lower temperature, lower
acid concentration, and feed flow required, the TAC will be
lower.

The volume of the reactor has a direct influence on the
TAC; bigger volumes require bigger equipment and, therefore,
more construction materials. This results in a direct increase in
the cost of equipment. From Table 2, the CP design has the
highest TAC because it is the model with the biggest volume.
Contrary to the TP design when the reactor has a lower
volume, the TAC is also lower.

Relating the design and operation variables to control
properties, it has been mentioned that the manipulative
variables are temperature, acid concentration, and feed flow;
therefore, any alteration directly affects control variables
(furfural production), which also affect, in this case, control
properties. This means that when increasing the temperature
of acid concentration (within the established limits), the
process will have higher furfural production and better control
properties. If there is a decrease in temperature, the condition
number will increase. This indicates that designs with low
temperatures have poor control properties when compared to
those that work at high temperatures. This can be corroborated
with what was reported by Zeitsch, indicating that under
conditions of low temperature, it is difficult to control the
reaction rate.

Concerning design variables to control properties, an
increase in volume implies bigger equipment. If volume is
bigger, the condition number will be lower because
disturbances have lower influences on the system. From
Table 2, it is possible to see these tendencies. TP has a smaller
volume than CP, but CP presents a better condition number. It
is important to emphasize that the condition number is a
qualitative comparative measure between designs. That is, this
only works when making a comparison between designs, as in
this case. The design that will have better control properties is
the one with the lowest value of condition number compared
to other designs. In contrast to the TAC, the best design is the
one with the biggest volume (CP).

4.2.2. Condition Number (y*) vs Eco-Indicator 99. Figure 6
shows the relation between the condition number and E199. It
is possible to observe that there is an antagonistic behavior

between both objectives. This antagonistic tendency is strongly
influenced by design and operation variables. First, it has been
mentioned that bigger volume translates to bigger equipment,
and therefore, disturbances have a less influence on the system,
and in return, the system will have better control properties.
Furthermore, bigger equipment represents the need for more
construction materials. An increase in steel as a construction
material increases the sum for the eco-points, thus making the
design less eco-friendly. It seems that in order to create a
design with better control properties, this objective comes into
competition when compared to the ecological index.

This tendency can be seen in Table 2; the CP design, with a
bigger volume, is the one with better control properties, but it
is also the design with the biggest sum of eco-points. Contrary
to the CP design, the TP design has the smallest volume, the
smallest sum of ecopoints, and is also the one with worse
control properties.

Relating operation variables by increasing the temperature,
there is an increase in the energy requirements of the process.
Likewise, by having an increase in the acid concentration and
the feed flow, there is an increase in the utilities cost. As it was
mentioned, a bigger volume reactor requires an increment in
steel as a construction material. Although the CP design is the
one with the biggest furfural production, it has the worst
environmental impact as it favors the production of
decomposition products, with a lower furfural performance.
By having a bigger production of decomposition products,
more raw materials are required. All the cases represent a direct
increase in the sum of eco-points, directly affecting EI99.
Therefore, it is observed that the objectives of the CP design
are in competition with the objectives of the TP design. In
order to have the best control properties, it is necessary to have
a process that is not so excessively eco-friendly. To have an
ecofriendly process, it is necessary to make the process less
controllable.

4.2.3. Total Annual Cost (TAC) vs Eco-Indicator 99 (EI99).
Figure 7 shows the relation between the TAC and EI99. It is
evident that there is no competition in the objectives. In both
cases, the variables of both design and operation give weight to
the cost and environmental objectives. It is possible to observe
that both objectives present the same ascending linear trend.
This trend can be explained by an analysis of the contribution
of the utilities and equipment costs in the TAC (see Figure S3)
and with the individual contribution by category in the EI99
(see Figure S4). From Figure S3, utilities cost impacts directly
the TAC. Utilities are significantly related to heat vapor: as
more heat vapor is required for the process, the utilities cost
will increase and therefore the TAC will increase as well. From
Figure S4, “fossil fuels” is the category that has the highest
contribution in the sum of eco-points. The heating vapor of the
process is related to this category: in order to have vapor, it is
necessary to burn fossil fuels. As more steam is required, the
amount of burning fossil fuel increases and therefore the sum
of eco-points in this category will also increase. In this sense,
EI99 and the TAC are affected in the same way. This may
explain how both objectives will always have the same trend.
That is, if the cost increases, so will the cost of EI99; in the
same manner, if one decreases, the other one will also decrease.
Despite the counterintuitive appearance of the results where a
cheap process is also the option with the lowest environmental
impact, note that the TAC and EI99 are strongly influenced by
the energy consumption. It is because of this that both
objectives have the same tendency. In this manner, the
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simplification on the kinetic models is not considered a
relevant tendency on these objectives. The more complex
kinetic models have been proven to give similar results in the
evaluation of different parameters in previous work.”’

The behavior presented can be explained because both the
TAC and EI99 are strongly influenced by the design and
operation variables of the process. By increasing the temper-
ature, there is an increase in the energy requirements of the
process. Likewise, by having an increase in the concentration of
acid and the feed flow, there is an increase in the cost of
utilities. Finally, having a bigger volume reactor requires bigger
equipment. An increase in the material requirements for the
construction of the equipment will cause a direct increase in
the cost of the equipment, utilities and, therefore, in the TAC
and EI99.

Data presented in Table 2 shows that both EI99 and the
TAC are directly affected by the size of the equipment, energy
supply, and raw material. From CP design, it is demonstrated
that by increasing the energy requirements of the process, acid
concentration, and feed flow, these requirements will have a
strong influence on EI99 that considerably increases the sum of
eco-points to the environmental indicator in comparison to the
TP design. In addition, having a bigger volume requires more
steel to be used in the equipment, thus increasing the eco-
points for the construction material. This trend is reported by
Sanchez-Ramirez et al.”'

The evaluation of economic and environmental indices of a
process is of major importance for the development of new
technologies. According to the principles of green chemistry, it
is necessary to have greener and more sustainable processes.
Likewise, this new design will only be accepted if the economic
indicator is profitable.

From Figures 5—7, it has been reported that furfural has a
low yield; Zeitsch reported that theoretically a maximum yield
of 50% can be obtained.®’ However, it is well known that when
experimenting, the yield tends to be lower. Based on
experimental data on furfural production, Bamufleh and
colleagues reported that it is possible to achieve a furfural
yield of 11-15% of raw material from date palm tree stem
residues.””

Based on Figures 5—7, it is possible to appreciate that of all
the existing designs, the optimum design yield percentage of
furfural ranges from 15 to 30% for an industrial production. In
Figure §, it can be seen that the optimal yield is 25.43%. Based
on these results, it can be said that in addition to obtaining an
optimal design for furfural production, the yield percentage
could be increased compared to the 11—-15% reported by
Bamufleh et al.*” in a nonoptimized process. The optimal
design parameters are shown in Table 2.

Comparing the optimization results and the experimental
data reported by Bamufleh et al.”* with an experimental
temperature of 413 K and acid concentration of 15 wt %, it is
possible to achieve a furfural yield of 15%. As a result, from the
optimized conditions, the optimal design presents similar
temperature to the experimentally used value of 411 K with a
decrease in the percentage of acid of 12wt %. Due to this, it is
possible to achieve an improvement in furfural yield up to
25.43%. If so, the optimization will have a better performance
by improving the operating conditions. This means that the
energy consumption, acid concentration, and the ecological
footprint will all be reduced. Finally, the proposed models are
useful to show the potential of the desired process and the
approach used. However, to achieve a more accurate

prediction, it is recommended to have better experiment
designs that will allow the acquisition of more accurate data to
predict a better model. The presented model is only a
simplification of complex kinetics.

5. CONCLUSIONS

In this work, a simultaneous design and optimization of a
furfural synthesis reactor have been proposed. Different aspects
of the process such as controllability, environmental impact,
and economic issues are considered. The evaluation of
different metrics provides a wide overview of how different
variables can affect the sustainability of the process. Therefore,
we have taken into account different metrics that aid in the
evaluation and selection of the most sustainable process.’” In
order to fulfill the aim of this work, it was necessary to propose
a kinetic model for furfural production based on the reported
experimental data.”” It was also necessary to estimate the
kinetic parameters corresponding to the proposed model,
where from statistical analysis, kinetic parameters were
obtained. When implemented in the model, they were able
to reproduce the experimental data in 5 out of the 7
experiments presented, having an adjustment of 96% of the
estimated parameters with respect to the experimental data
reported.22 Thus, from the proposed model, it was possible to
perform the dynamic optimization of design and control to
produce furfural from date palm tree waste.

From the simultaneous optimization of control and design
parameters, it was possible to obtain multiple designs where
the furfural mass yield percentage was maximized. The cost
and the eco-points were also minimized in a system with
satisfactory control properties. According to the analysis of the
designs at the extremes of the Pareto fronts, it can be observed
that the objectives are in competition. Having a design with
lower cost and lower environmental impact implies sacrificing
control properties. Conversely, having a design with favorable
control properties represents having a more expensive and eco-
friendly design. Therefore, the design where the objectives are
not in competition under the utopia point methodology is
chosen as the optimal design.

The optimal operating conditions of the system found to be
a temperature of 411.26 K and concentration of sulfuric acid
with a weight of 12.31% allow for an appropriate control of the
reaction. Under these conditions, it is possible to maximize the
yield of furfural to 25.43% with a production of 2014.4 kg/h.
These conditions represent an improvement in the yield of
furfural compared to the experimentally reported ranges of
around 11 and 15%** for nonoptimized conditions of costs,
environmental effects, and control properties. It can be
concluded that it is possible to solve the dynamic optimization
problem, considering the simultaneous optimization of control
and design parameters of the reaction zone for furfural
production. The objective was to minimize the TAC, E199, and
the condition number as economic, environmental, and control
criteria, respectively. In order to have sustainable production,
emerging green technologies need to be optimized toward a
minimal environmental impact and a maximal economic
impact. Moreover, these designs will only be able to replace
conventional technologies if they can economically compete
with them.

To conclude, this work creates the opportunity for future
research in the field. In order to improve the modeling efforts,
it is necessary to generate a more suitable experimental data for
the kinetic model that is currently under study. Furthermore,
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kinetic models depend on the use of biomass, so research can
be applied for other and more promising biomasses, as well as
the raw material for furfural production. A cogeneration
research of by-products in the same reactor and an economy-
of-scale research can also be performed.
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B NOMENCLATURE

B tunable parameter

O minimum singular value

o* maximum singular value

G impact value for category

k, pre-exponential constant

rp.p  decomposition products reaction rate
Trufural  furfural reaction rate

Twln  Xylan reaction rate

16001

pubs.acs.org/IECR
Cpp  decomposition product concentration
Crurfurat furfural concentration
Cy sulfuric acid concentration
Cinxylan initial xylan fraction
CN condition number
CSTR continuous stirred-tank reactor
Cyln  Xylan concentration
DE differential evolution
DETL Differential Evolution with Taboo List
E activation energy
EI99  eco-indicator 99
F, feed flow
Fou outlet flow
H,SO, sulfuric acid
HCl  hydrochloric acid
K Kelvin degrees
LSR  liquid solid ratio
r kinetic constant
R universal gas constant
SVD  singular value decomposition
t time
T temperature
TAC  total annual cost
TS Taboo search
A volume
wt %  weight percent
r¥ condition number
a amount of what is being evaluated
p density
10} weight factor for indicator damage
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