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a b s t r a c t

Parameter estimation for vapor–liquid equilibrium (VLE) data modeling plays an important role in design,
optimization and control of separation units. This optimization problem is very challenging due to the
high non-linearity of thermodynamic models. Recently, several stochastic optimization methods such
as Differential Evolution with Tabu List (DETL) and Particle Swarm Optimization (PSO) have evolved as
alternative and reliable strategies for solving global optimization problems including parameter esti-
mation in thermodynamic models. However, these methods have not been applied and compared with
respect to other stochastic strategies such as Simulated Annealing (SA), Differential Evolution (DE) and
Genetic Algorithm (GA) in the context of parameter estimation for VLE data modeling. Therefore, in this
study several stochastic optimization methods are applied to solve parameter estimation problems for
VLE modeling using both the classical least squares and maximum likelihood approaches. Specifically,
we have tested and compared the reliability and efficiency of SA, GA, DE, DETL and PSO for modeling
several binary VLE data using local composition models. These methods were also tested on benchmark
problems for global optimization. Our results show that the effectiveness of these stochastic methods
varies significantly between the different tested problems and also depends on the stopping criterion
especially for SA, GA and PSO. Overall, DE and DETL have better performance for solving the parameter
estimation problems in VLE data modeling.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The estimation of parameters in thermodynamic models is an
important requirement and a common task in many areas of chem-
ical engineering because these models form the basis for synthesis,
design, optimization and control of process systems [1,2]. In the
particular case of process separation, thermodynamic models play
a major role with respect to energy requirements, phase equilib-
ria and equipment sizing. Specifically, the parameter estimation
problem refers to determining values of the model parameters that
provide the best fit to a set of measured data [3,4].

Data modeling using thermodynamic equations is generally
based on classical least squares or maximum likelihood approaches
[1,3,5–7]. In the classical least squares, it is assumed that indepen-
dent variables are not subject to measurement error, while errors
in all measured variables are accounted in the maximum likeli-
hood approach. Both formulations involve the minimization of a
suitable objective function subject to constraints arising from the
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model equations. Data correlation can be performed either by direct
optimization of the objective function or by solving an equiva-
lent system of non-linear equations obtained from the stationary
conditions of the optimization problem. Most of thermodynamic
models are non-linear in their adjustable parameters and, as a con-
sequence, the objective function for data fitting is non-linear and
potentially non-convex. Therefore, parameter estimation problems
are often very difficult to solve reliably even for simple mathemat-
ical equations [1,3].

In particular, estimation of parameters in non-linear thermo-
dynamic models for vapor–liquid equilibrium (VLE) modeling has
been of great interest in the chemical engineering literature. Exper-
imental VLE data are essential for the design of industrial separation
processes and for development of accurate models in process sys-
tems engineering [8]. However, a number of pitfalls and difficulties
may be faced in parameter estimation for VLE modeling; these
include: convergence to a local minimum, flat objective function
in the neighborhood of the globally optimal solution, badly scaled
model functions, and non-differentiable terms in thermodynamic
equations. In addition, the number of optimization variables can
be very large especially for error-in-variable formulations. Several
researchers have demonstrated the challenging nature of param-
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eter estimation problems for VLE data modeling, and they have
highlighted the need for reliable numerical techniques in order to
overcome these difficulties, e.g., [1,3,4,6,7,9–13].

Note that failure to find the globally optimal parameters for
a thermodynamic model and using locally optimal parameters
instead, can have significant consequences in subsequent calcula-
tions, may cause errors and uncertainties in equipment design and
erroneous conclusions about model performance [3]. In the con-
text of VLE data modeling, recent studies have shown that using
the locally optimal parameters may result in incorrect predictions
of the azeotropic states with local composition models and in qual-
itative discrepancies of the phase behavior such as prediction of
spurious phase split and modeling of homogeneous azeotropes
as heterogeneous [3,13]. These failures are undoubtedly potential
sources of problems for design of separation processes.

For reliable parameter estimation in VLE modeling, the use of
deterministic and stochastic global optimization methods has been
suggested in the literature. The first type of methods guarantees
convergence to the global solution, and they include two main
approaches: branch-and-bound optimization procedures with con-
vex underestimating functions [1] and interval techniques [3,6,7,9].
Recently, a bi-level optimization with non-convex lower-level pro-
grams has been proposed for reliable parameter estimation in VLE
problems [13]. Unfortunately, current deterministic global opti-
mization methods may be too expensive (in terms of computational
effort) for multivariable problems and, in some cases, problem
reformulation is needed depending on the characteristics of the
thermodynamic model under study. In contrast, stochastic global
optimization methods can locate good solutions in a reasonable
CPU time, are easy to use and independent of model although they
do not guarantee the global optimality. These methods usually con-
verge quickly to the vicinity of the global solution and are suitable to
deal with large number of parameters. It appears that these meth-
ods may offer the best compromise between quality of solution and
efficiency for multivariable parameter estimation problems.

Until now, Simulated Annealing (SA), Genetic Algorithm (GA),
Random Tunneling algorithm (RTA) and Differential Evolution (DE)
have been successfully used for solving parameter estimation in
VLE modeling [4,10–12,14,15]. Specifically, Alvarez et al. [4] applied
and compared two versions of GA for VLE modeling using local
composition models and equations of state. Srinivas and Ranga-
iah [10] used the RTA for VLE modeling using the error-in-variable
(EIV) approach. Bonilla-Petriciolet et al. [11] studied the perfor-
mance of SA for parameter estimation in VLE modeling using both
least squares and maximum likelihood formulations. In another
study, DE was successfully applied to modeling the equilibrium
solubility of CO2 in aqueous alkanolamines [12]. Costa et al. [14]
reported the application of SA for parameter estimation in the mod-
eling of vapor–solid equilibrium with supercritical carbon dioxide
as the solvent. Steyer and Sundmacher [15] used an evolution-
ary optimization strategy for the simultaneous fitting of VLE and
liquid–liquid equilibrium (LLE) data for ternary systems. Apart
from the methods used in these studies, other reliable stochastic
methods such as Differential Evolution with Tabu List (DETL) and
Particle Swarm Optimization (PSO) are available in the literature
and have been successfully used for thermodynamic calculations,
e.g. [16,17]; so, they are promising for parameter estimation in ther-
modynamic models. To the best of the authors’ knowledge, these
novel methods have not been tested and evaluated for VLE data
modeling.

In this study, we apply and compare a number of stochastic
global optimization methods for modeling VLE data. Specifically,
we study the performance of SA, GA, DE, PSO and DETL for VLE
data modeling of several binary systems with local composition
models using the classical least squares and maximum likelihood
approaches, as well as for benchmark problems. This comparison

is essential to identify the relative strengths of novel stochastic
optimization methods for VLE data modeling. This study is the
first attempt to compare comprehensively a number of stochas-
tic global optimization methods for parameter estimation in VLE
data modeling.

2. Description of stochastic optimization methods

Many stochastic global methods have been proposed and tested
in several disciplines, and they are expected to be widely used in
chemical engineering including thermodynamic applications in the
coming years. In this study, we used five stochastic optimization
methods: SA, GA, DE, DETL and PSO for parameter estimation in VLE
data modeling. Note that SA, GA and DE are classical stochastic opti-
mization methods and have recently been used by the authors and
other researchers, while DETL and PSO are new to parameter esti-
mation problems in VLE modeling. Further, PSO has been selected
instead of Ant Colony Optimization or other swarm intelligence
methods due to the results reported in other global optimization
studies, e.g. [18], which indicate that PSO may perform better. All
the selected methods have the attributes of a good optimization
strategy such as generality, efficiency, reliability and ease of use
[19]. SA is a point-to-point method while GA, DE, DETL and PSO are
population-based methods. A brief description of these algorithms
is presented in the following subsections, and detailed explanation
of them is available in the cited references.

In this paper, the global optimization problem for VLE model-
ing is as follows: minimize Fobj(�u) subject to �u ∈ ˝ where �u is a
continuous variable vector in the domain ˝ in nvar dimensions,
and Fobj(�u): ˝ → � is a real-valued function. The minimization of
Fobj can be treated either as a constrained or, by substitution of
the model equations in the objective function, as an unconstrained
minimization problem. In the present study, we have solved the
unconstrained optimization problem with the domain ˝ defined by
the upper and lower limits of each decision variable. The nvar deci-
sion variables in the VLE parameter estimation problems are the
adjustable parameters of thermodynamic models if least squares
criterion is used. When the EIV approach is applied, the decision
variables are both these model parameters and the true values of
state variables (i.e. temperature, pressure, and liquid and vapor
compositions).

2.1. Simulated Annealing

SA mimics the thermodynamic process of cooling of molten
metals to attain the lowest free energy state [20]. Starting with an
initial solution, the algorithm performs a stochastic partial search
of the space defined for decision variables. In minimization prob-
lems, uphill moves are occasionally accepted with a probability
controlled by the parameter called annealing temperature: TSA.
The probability of acceptance of uphill moves decreases as TSA
decreases. At high TSA, the search is almost random, while at low
TSA the search becomes selective where good moves are favored.
The core of this algorithm is the Metropolis criterion [21], used to
accept or reject uphill movements with the acceptance probability
given by

M(TSA) = min
{

1, exp
(−�f

TSA

)}
(1)

where �f is the change in objective function value from the current
point to new point.

In this study, the SA algorithm proposed by Corana et al. [22]
has been used because of its good performance in thermodynamic
calculations, e.g. [23,24]. In this algorithm, a trial point is randomly
chosen within the step length VM (which is a vector of length nvar)
from the starting/current point. The objective function is evalu-
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ated at this trial point, and its value is compared to the objective
value at the starting/current point. Eq. (1) is used to accept or reject
the trial point. If this trial point is accepted, the algorithm contin-
ues the search using that point; otherwise, another trial point is
generated within the neighborhood of the starting/current point.
Each element of VM is periodically adjusted so that half of all func-
tion evaluations in that direction are accepted. A fall in TSA, after
NT × NS × nvar function evaluations, is imposed upon the system
using the cooling schedule. Note that NT is the number of iterations
before TSA reduction and NS is the number of cycles for updating the
decision variables.

In our calculations, cooling schedule for decreasing TSA is defined
as

TSA,k = 0.5(TSA,0 − TSA,F )
(

1 − tanh
(

17k

Itermax
− 5
))

+ TSA,F (2)

where Itermax is the maximum number of iterations for SA, TSA,k is
the annealing temperature at iteration k, and TSA,0 and TSA,F are the
initial and final values for the annealing temperature, respectively.
Thus, as TSA declines, downhill moves are less likely to be accepted
and SA focuses on the most promising area for optimization. The
iterative steps are performed until the specified stopping criterion:
either the maximum number of successive iterations (Scmax) with-
out improvement in the best function value, or until the maximum
number of iterations (Itermax), is satisfied. The main parameters of
SA are TSA,0, TSA,F, NS, NT, Scmax and Itermax. Detailed description and
flowchart of this algorithm can be found in Corana et al. [22]. We
have used, after suitable modifications, the subroutine developed
by Goffe et al. [25], for the present study.

2.2. Genetic Algorithm

GA is a stochastic technique that simulates natural evolution
on the solution space of the optimization problems. It operates on
a population of potential solutions (individuals) in each iteration
(generation). By combining some individuals of the current popu-
lation according to predefined operations, a new population that
contains better individuals, is produced as the next generation. The
first step of GA is to create randomly an initial population of Npop

solutions in the feasible region. GA works on this population and
combines (crossover) and modifies (mutation) some chromosomes
according to specified genetic operations, to generate a new popu-
lation with better characteristics. Individuals for reproduction are
selected based on their objective function values and the Darwinian
principle of the survival of the fittest [26]. Genetic operators are
used to create new individuals for the next population from those
selected individuals of the current population, and they serve as
searching mechanisms in GA. In particular, crossover forms two
new individuals by first choosing two individuals from the mat-
ing pool (containing the selected individuals) and then swapping
different parts of genetic information between them. This combin-
ing (crossover) operation takes place with a user-defined crossover
probability (Pcros) so that some parents remain unchanged even if
they are chosen for reproduction. Mutation is an unary operator
that creates a new solution by a random change in an individual.
It provides a guarantee that the probability of searching any given
string will never be zero and acting as a safety net to recover good
genetic material which may be lost through the action of selection
and crossover. The mutation procedure proceeds with a probability
Pmut.

Selection, crossover and mutation procedures are recursively
used to improve the population and to identify promising areas for
optimization. This algorithm terminates when the user-specified
criterion is satisfied. For comparison purposes, the stopping con-
ditions described for SA have been implemented in all stochastic
methods tested in this work. Specifically, GA stops after evolving

for the specified number of generations (Genmax), or until per-
forming the maximum number of successive generations (Scmax)
without improvement in the best objective value. We have used a
GA with floating-point encoding, selection via stochastic universal
sampling, modified arithmetic crossover and non-uniform muta-
tion. Details of this algorithm are available in Rangaiah [23]. The
key parameters of GA are Npop, Pcros, Pmut, Genmax and Scmax.

2.3. Particle Swarm Optimization

PSO is a novel and promising population-based method that
belongs to the class of swarm intelligence algorithms. Kennedy
and Eberhart [27] introduced this strategy for global optimization,
which is inspired by the social behavior of flocking swarms of birds
and fish schools. It exploits a population of potential solutions to
identify promising areas for optimization. In this context, the popu-
lation of potential solutions is called the swarm and each solution is
called particle. Particles are conceptual entities, which fly through
the multi-dimensional search space. The success histories of the
particles influence both their own search patterns and those of their
peers. Each particle has two state variables: its current position and
current velocity. In the PSO version used in this study, the search
is focused on promising regions by biasing each particle’s veloc-
ity towards both the particle’s own remembered best position and
the communicated best neighborhood location so far. The relative
weights of these two positions are scaled by the cognitive and social
parameters. Cognitive parameter has a contribution towards the
self-exploration (or experience) of a particle, while social param-
eter has a contribution towards motion of the particles in global
direction taking into account the swarm motion in the preceding
iteration [28].

Thus, the velocity and position of each particle is updated using

Vi,j(k + 1) = wVi,j(k) + C1R1(sp
i,j

− si,j(k)) + C2R2(sbest
i,j − si,j(k)) (3)

si,j(k + 1) = si,j(k) + Vi,j(k + 1) (4)

where R1, R2 ∈ (0, 1) are random numbers, C1 and C2 are the cog-
nitive and social parameters, si,j(k) is the position/value of decision
variable i in particle j at iteration k, Vi,j(k) is the velocity of deci-
sion variable i in particle j at iteration k, sp

i,j
is the particle’s own

remembered best position for decision variable i in particle j, sbest
i,j

is the communicated best neighborhood location so far for decision
variable i in particle j, and w is the inertia weight factor.

The inertia weight factor is used to control the impact of the pre-
vious velocities on the current velocity. It influences the trade-off
between the global and local exploration abilities of the particles.
At the initial stage of the search process, large inertia weight is rec-
ommended to enhance the global exploration; at the last stage, this
parameter should be reduced for better local exploration. There-
fore, in our calculations, we have considered w decreasing linearly
from w0 to wf over the whole run; and C1 also decreases linearly
from C1,0 to C1,f. Specifically, we have used the following equations:

C1 = (C1,f − C1,0)
(

k

Itermax

)
+ C1,0 (5)

w = (wf − w0)
(

k

Itermax

)
+ w0 (6)

where Itermax is the maximum number of iterations for PSO. Previ-
ous numerical experience indicates that the dynamic adaptation of
these parameters improves the global search over the entire search
space during the early iterations and leads the particles to con-
verge to global optimum at the end of the search [28]. Usually C1
ranges from [0.5, 3.5] whereas w ranges [0.4, 0.8]. Based on prelim-
inary trials and results reported in the literature, we have chosen
C1,f = 0.5, wf = 0.4 and C2 = 4.0 − C1 in the present study. In addi-
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tion, the velocity of each particle is restricted to a maximum value
within the interval [−Vmax, Vmax], which is defined considering the
bounds on decision variables. Each particle is assigned to a neigh-
borhood of a pre-specified number of particles, nh (=0.25 × number
of particles, np). The best position attained so far by particles that
comprise the neighborhood is communicated among them.

The overall algorithm of PSO is as follows. At the beginning, a
population of np particles is initialized with random positions si,j
and random velocities Vi,j for i = 1, 2, . . ., nvar and j = 1, 2, . . ., np.
Once the np particles are initialized, the positions and velocities of
all particles are modified using Eqs. (3) and (4). After calculating
the velocities and position for the next iteration k + 1, the current
iteration is completed. The best particle is updated only when a new
one is found yielding a decrease in the objective function value. This
process is performed for a certain number of iterations (Itermax), or
until the maximum number of successive iterations (Scmax) without
improvement in the best function value has been reached. The main
parameters of PSO are: np, w0, C1,0, Itermax and Scmax.

2.4. Differential Evolution

DE is a population-based method that has found several appli-
cations in science and engineering, including chemical engineering
and for parameter estimation. The algorithm used in this study
starts with specifying the parameters, namely: amplification factor
(A), crossover constant (CR), population size (NP), maximum num-
ber of successive iterations (Scmax) without improvement in the
best function value and maximum number of generations (Genmax).
The initial population is randomly generated using the uniformly
distributed random numbers to cover the entire feasible space. The
individuals are checked for boundary violation to see if any indi-
vidual is generated in the infeasible region; the infeasible points
are replaced by generating new individuals. The objective function
values of all the individuals are calculated, and the best point is
determined.

Then, the three main steps: mutation, crossover and selection on
the population, are carried out. Mutation and crossover operations
are performed to diversify the search thus escaping from the local
minima. The mutant vector is generated for each randomly chosen
target vector Xi,G by

Vi,G+1 = XR1,G + A(XR2,G − XR3,G) i = 1, 2, 3, . . . , NP (7)

where random numbers R1, R2 and R3 are distinct and belong to the
set {1, 2, . . ., NP}, and XR1,G, XR2,G and XR3,G represents the three ran-
dom individuals chosen in the current generation G, to produce the
mutant vector for the next generation, Vi,G+1. The random numbers
should be different from the running index, i, and hence NP should
be ≥4 to allow mutation. Parameter A is a real value between 0
and 2, and it controls the amplification of the differential variation
between the two random individuals.

In the crossover step, the trial vector Ui,G+1 is produced by copy-
ing some elements of the mutant vector, Vi,G+1 to the target vector,
Xi,G with probability equal to CR. A random number (ran) is gener-
ated for each element of the target vector; if ran ≤ CR, the element
of the mutant vector is copied to the trial vector, else the target
vector element is copied. After mutation and crossover operations,
the trial vector competes with the target vector for selection into
the next generation. A greedy criterion based on the objective
value is used for this selection. If the trial vector has a better value
compared to the target vector, it replaces the target vector in the
population thus allowing the better solution into further genera-
tions. The process of mutation, crossover and selection is repeated
until the termination criterion (Genmax or Scmax) is satisfied. The
algorithm then terminates providing the best point that has been
explored over all the generations. A detailed explanation of this
method is provided by Storn and Price [29], and we have used the

algorithm reported by Srinivas and Rangaiah [30] in the present
study.

2.5. Differential Evolution with Tabu List

This recent stochastic method developed by Srinivas and Ran-
gaiah [16] is a hybrid strategy obtained from DE and Tabu Search
(TS). DETL begins with the selection of values for parameters: pop-
ulation size (NP), amplification factor (A), crossover constant (CR),
tabu radius (tr), tabu list size (tls), maximum number of genera-
tions (Genmax), and maximum number of successive generations
(Scmax) without improvement in the best function value. The algo-
rithm generates the initial population of size NP using uniformly
distributed random numbers to cover the entire feasible region.
The objective function is evaluated at each individual/point, and
the best one is selected. The tabu concept of TS is implemented
in the generation step of DE (i.e., after crossover and mutation) to
improve the diversity among the individuals and consequently the
computational efficiency. It employs a tabu list with the parame-
ters: tr and tls, which keep track of the evaluated points for avoiding
revisits to them during the subsequent search.

The three main steps: mutation, crossover and selection of DE
along with tabu checking are performed on the population dur-
ing each generation. For this, a mutant individual is generated for
each randomly chosen target individual (Xi,j) in the population by
Eq. (7). In the crossover step, a trial individual/vector is generated
by copying some elements of the mutant individual to the target
individual with a probability of CR. A boundary violation check is
performed to check the feasibility of the resulting trial individual; if
any bound is violated, the trial individual is either replaced by gen-
erating a new individual or forced to the nearest boundary (lower
or upper). The trial individual is then compared to the already eval-
uated points in the tabu list in terms of the Euclidean distance. If the
Euclidean distance is smaller than the tabu radius, which indicates
that the objective function value at the trial vector and at one of
the points in the tabu list are probably close to each other, the trial
individual is rejected considering that it may not give new informa-
tion about the objective function except increasing the number of
function evaluations. The rejected point is replaced by generating
another trial point by crossover and mutation operations, until the
Euclidean distance between the new point and to all points in the
tabu list is greater than the tabu radius.

The process of generating new individuals, including checking
their closeness to those in the tabu list, is repeated until all members
of the new population are produced. The objective function is eval-
uated at the trial individual only if it is away from all the points in
the tabu list. After each evaluation, the tabu list is updated dynam-
ically to keep the latest point(s) in the list by replacing the earliest
entered point(s). In the selection step, a greedy criterion such as
fitness (i.e., objective function) value is used to select the better
one between the trial and target individuals. If the trial individual is
selected, it replaces the target individual in the population immedi-
ately and may participate in the subsequent mutation and crossover
operations. If the target individual is better, then it remains in the
population and may participate in the subsequent mutation and
crossover operations. The process of generation, evaluation and
selection is repeated NP times in each generation. The algorithm
runs until the stopping criterion (Genmax or Scmax) is satisfied, and
gives the best point obtained over all the generations. Details of
DETL algorithm can be found in Srinivas and Rangaiah [16].

2.6. Implementation of the methods

In the present study, FORTRAN codes developed for the five
stochastic algorithms were used. These codes are available to inter-
ested readers upon request to the corresponding author. Each
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method has been implemented in combination with a local opti-
mization technique at the end of global search, for finding the global
minimum accurately and efficiently. Quasi-Newton method imple-
mented in the subroutine DBCONF of IMSL library was used for local
optimization. This subroutine calculates the gradient via finite dif-
ferences and approximates the Hessian matrix according to BFGS
formula. For more details on this local strategy, see the optimization
book by Dennis and Schnabel [31]. The default values of DBCONF
parameters in the IMSL library were used in our study. All calcula-
tions were performed on the Intel Pentium M 1.73 GHz processor
with 504 MB of RAM. This computer performs 254 million floating
point operations per second (MFlops) for the LINPACK benchmark
program (available at http://www.netlib.org/) for a matrix of order
500.

3. Formulation of parameter estimation problem for VLE
modeling

Consider a set of observations qij of i = 1, 2, . . ., m depen-
dent/response variables from j = 1, 2, . . ., ndat experiments
are available, where the responses can be expressed by an
explicit model qij = fi(�rj,

��), with nl independent variables �rj =
(r1,j, . . . , rnl,j)

T and npar parameters �� = (�1, . . . , �npar)T . Measure-
ment errors in �rj can either be treated or neglected; depending on
this choice, we can have a least squares or maximum likelihood for-
mulation [2,3]. Only the model parameters are determined in the
first approach whereas, in the second formulation, both the true
values of state variables and model parameters are obtained [2]. We
have used both formulations for modeling VLE data, and the per-
formance of the selected stochastic methods has been compared in
these scenarios.

Slightly different objective functions can be used to obtain the
parameter values that provide the best fit for a specified model
[32]. Objective functions involving fractional errors (see Eq. (8)) are
preferred for data fitting using thermodynamic equations because
they weigh errors in small and large quantities equally. Thus, for the
case of classical least squares (LS) criterion, the following objective
function is used.

Fobj =
ndat∑
j=1

m∑
i=1

(
qij − fi(�rj,

��)
qij

)2

(8)

where qij is the set of observations, fi is the model for dependent

variable i, �� is the vector of parameters, �rj is the vector of indepen-
dent variables, m is the number of dependent/response variables
and ndat is the number of experiments. This function is minimized
with respect to the model parameters �� inside specified bounds. For
the case of VLE data (i.e., x–y–P at constant T, or x–y–T at constant
P), excess Gibbs energy equations are widely employed for phase
equilibrium modeling. Therefore, the objective function commonly
used for data fitting is based on activity coefficients

Fobj =
ndat∑
j=1

c∑
i=1

(
�exp

ij
− �calc

ij

�exp
ij

)2

(9)

where �exp
i

and �calc
i

are respectively the experimental and calcu-
lated values for the activity coefficient of component i and c is the
number of components in the mixture. Note that this formulation is
equivalent to assuming that the standard error in the measurement
of � ij is proportional to its value [2].

The equilibrium between vapor and liquid phases in a multi-
component system implies that T, P and the fugacities of each
component must be the same in both phases. At low pressure,
the fugacity coefficient of pure components nearly cancels each
other and Poynting corrections usually are very close to unity. With

these assumptions, �exp
i

can be calculated from VLE data using the
following expression:

�exp
i

= yexp
i

P

xexp
i

P0
i

i = 1, . . . , c (10)

where xexp
i

and yexp
i

are respectively the experimental mole frac-
tions of component i in liquid and vapor phases at equilibrium, and
P0

i
is the vapor pressure of pure component i at the system temper-

ature T. We have used the Wilson, NRTL and UNIQUAC models to
calculate the liquid-phase activity coefficients, �calc

i
, and Eq. (9) is

optimized with respect to the energy parameters of these models.
The energy parameters of thermodynamic models are defined as in
the DECHEMA [33]. The global minimization of LS objective func-
tion can be done as an unconstrained optimization problem using
local composition models.

On the other hand, if we assume that there are measurement
errors in the state variables zij for the experiments of the system to
be modeled, the minimization problem that must be solved is the
error-in-variable (EIV) formulation of the form:

Fobj =
ndat∑
j=1

nest∑
i=1

(zt
ij

− zij)
2

�2
i

(11)

subject to

�g(zt
ij,

��) = 0 i = 1, . . . , nest j = 1, . . . , ndat (12)

where �g is a vector of np model functions, nest is the number of
state variables, zt

ij
is the unknown “true” value of ith state variable

in jth experiment, and �i is the standard deviation associated with
the measurement of ith state variable. The decision variables of EIV
problem are the set of zt

ij
and the model parameters ��. In this for-

mulation, there is a substantial increase in the dimensionality of
the optimization problem, which depends on the number of exper-
iments (ndat). For the case of VLE data, the state variables are x, y,
P and T with standard deviations (�x, �y, �P and �T).

At low pressure, VLE can be described by the equations:

P =
c∑

i=1

�ixiP
0
i (13)

yi = �ixiP
0
i∑c

j=1�jxjP
0
j

i = 1, . . . , c (14)

where � i is the calculated activity coefficient by the chosen ther-
modynamic model and c is the number of components involved in
the VLE system. Then, we can formulate the data fitting problem
as an unconstrained optimization problem using Eqs. (13) and (14)
to eliminate Pt and yt

i
in the EIV objective function (Eq. (15)). For

the unconstrained problem, the independent variables are the set
of �z = (�xij, �T) for all measurements, while the decision variables are
�� = (�1, . . . , �npar)T and the set of �zt = (�xt

ij
, �Tt). The objective func-

tion for VLE data correlation using the EIV approach can be defined
as

Fobj =
ndat∑
j=1

c∑
i=1

[
(xt

ij
− xij)

2

�2
xi

+
(yt

ij
− yij)

2

�2
yi

+
(Tt

j
− Tj)

2

�2
T

+
(Pt

j
− Pj)

2

�2
P

]

(15)

which is optimized with respect to npar + c × ndat decision vari-
ables. Note that mole fraction summation is one equality constraint,
which was used to eliminate one decision variable (mole fraction),
for each dataset.

For both LS and EIV formulations, the highly non-linear form of
the thermodynamic models makes Fobj strongly non-linear, poten-
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Table 1
Details of the benchmark problems used for performance comparison of stochastic optimization methods.

Fobj Number of decision variables, nvar Global minimum Remarks

Zakharov (ZAKnvar ), Fobj =

(
nvar∑
i=1

u2
i

)
+

(
nvar∑
i=1

0.5iu2
i

)2

+

(
nvar∑
i=1

0.5iu2
i

)4

nvar = 2, 5, 10 and 20; −5 ≤ ui ≤ 10 0 at u = (0, . . ., 0) Unimodal

Rosenbrock (ROSnvar ), Fobj =
nvar∑
i=1

[100(u2
i

− ui+1)
2 + (ui − 1)2] nvar = 2, 5, 10 and 20; −5 ≤ ui ≤ 10 0 at u = (1, . . ., 1) The global optimum is inside

a long, narrow, parabolic
shaped flat valley

Goldstein and Price (GP2), Fobj = [1 + (u1 + u2 + 1)2(19 − 14u1 + 3u2
1 − 14u2 + 6u1u2 + 3u2

2)] ∗
[30 + (2u1 − 3u2)2(18 − 32u1 + 12u2

1 + 48u2 − 36u1u2 + 27u2
2)]

nvar = 2; −2 ≤ ui ≤ 2 3 at u = (0, −1) 4 local minima

Modified Himmelblau (mHB), Fobj = (u2
1 + u2 − 11)

2 + (u1 + u2
2 − 7)

2 + 0.1((u1 − 3)2 + (u2 − 2)2) nvar = 2; −6 ≤ ui ≤ 6 0 at u = (3, 2) 4 local minima

Rastrigin (RASnvar ), Fobj = 10nvar +
nvar∑
i=1

(u2
i

− 10 cos(2� ui)) nvar = 20; −600 ≤ ui ≤ 600 0 at u = (0, . . ., 0) Thousands of local minima

Griewank (GWnvar ), Fobj =
nvar∑
i=1

u2
i
/d −

nvar∏
i=1

cos(ui/
√

i) + 1 nvar = 20; −600 ≤ ui ≤ 600 0 at u = (0, . . ., 0) Hundreds of local minima

Hartman (HARnvar ), Fobj = −
4∑

i=1

ci exp

[
−

nvar∑
j=1

aij(uj − pij)
2

]
nvar = 3 and 6; 0 ≤ ui ≤ 1 −3.862782 at u = (0.114614, 0.555649,

0.852547) for nvar = 3; −3.322368 at
u = (0.201690, 0.150011, 0.476874, 0.275332,
0.311652, 0.657301) for nvar = 6

4 local minima, parameters ci ,
aij and pij are reported by Ali
et al. [19]

Shekel (SHEm), Fobj = −
m∑

i=1

1∑4

j=1
(uj−aij )

2+ci

for m = 5, 7 and 10 nvar = 4; 0 ≤ ui ≤ 10 −10.15 at u = (4, . . ., 4) for m = 5; −10.40 at
u = (4, . . ., 4) for m = 7; −10.53 at u = (4, . . ., 4)
for m = 10

m local minima, parameters
ci and aij are available in Ali et
al. [19]
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Table 2
Suggested values of parameters in the stochastic optimization methods for solving benchmark and VLE data modeling
problems.

Method Parameter Tested values Suggested value

Benchmark
problems

VLE data modeling
problems

SA TSA,0 0.1–1000 10 10
TSA,F 10−9–10−3 10−6 10−6

GA Pcros 0.5–0.9 0.8 0.8
Pmut 0.001–0.5 0.5 0.1

PSO C1,0 1.5–3.5 3.5 3.5
w0 0.7–0.9 0.8 0.8

DE CR 0.1–0.9 0.5 0.1
A 0.1–0.7 0.5 0.1

DETL CR 0.1–0.7 0.5 0.3
A 0.1–0.9 0.5 0.1
tr 0.0001nvar–0.01nvar 0.001nvar 0.001nvar

tls 5–20 20 20

tially non-convex with several local minima within the specified
bounds. Previous studies have shown that parameter estimation
in local composition models for VLE data modeling involves solu-
tion of a global optimization problem [1,3,4,9–11]. In this study
we have tested SA, GA, DE, DETL and PSO for the global mini-
mization of the objective functions (Eqs. (9) or (15)) for VLE data
modeling.

4. Benchmark problems

In addition to the VLE data modeling problems, several bench-
mark problems having 2–20 decision variables and different
number of local optima, were used to evaluate and compare the five
stochastic methods, each followed by the quasi-Newton method.
Performance on benchmark problems is used as the starting point
to test the optimization strategies, to gain insights on how the algo-
rithms behave and to analyze their relative merits for well-known
objective functions. Further, the results on benchmark problems
help to generalize the relative performance of the optimization
techniques. We have selected some benchmark problems consider-
ing the characteristics and difficulty of VLE data modeling problems
(e.g., multimodal and multivariable problems such as those of
error-in-variable formulation). So, the results are useful to iden-
tify the potential strengths and weaknesses of the tested stochastic
optimization methods for VLE data modeling.

Table 1 provides the details of the benchmark functions, which
have been used for testing stochastic optimization methods in other
studies, e.g. [16,19,30,34]. The performance of all stochastic meth-
ods is evaluated based on both reliability (measured in terms of
number of times the algorithm located the global minimum out of
100 trials, refereed as success rate SR) and computational efficiency
(measured in terms of average number of function evaluations
NFE and CPU time). Note that NFE includes both the function calls
for evaluating the objective function using the stochastic method
(NFEstc) and the function calls for the local optimization (NFEqN).
The average NFE and CPU time are evaluated using successful tri-
als only. A trial is considered successful if the global optimum is
obtained with an absolute error of 10−5 or less in the objective
function value.

4.1. Parameter tuning

Rosenbrock, Griewank and Shekel functions (Table 1) have been
used to establish the most suitable parameter values for solving the
benchmark problems efficiently and reliably. Parameter tuning was
carried out by varying one parameter at a time with the remain-

ing parameters fixed at nominal values, which were established
using values reported in the literature [16,23,24,28,30]. The tested
and suggested values for parameters of each stochastic method are
summarized in Table 2.

4.2. Results and discussion

All stochastic methods were studied using the two stopping cri-
teria: (a) maximum number of iterations/generations Itermax or
Genmax (referred as stopping criterion 1, SC1) and (b) maximum
number of iterations/generations without improvement in the best
function value Scmax (referred as stopping criterion 2, SC2). The per-
formance of all stochastic methods is compared in terms of SR and
NFE by examining different levels of algorithm efficiency, which
are obtained by changing the values of NS × NT (=NP = np = Npop),
Itermax/Genmax and Scmax. Note that optimal values of these param-
eters may be problem dependent, and also determine the trade-off
between efficiency and reliability. As a consequence, selection of
proper values for them is important for the comparison.

The results obtained for benchmark problems are presented in
Fig. 1 and Tables 3–6. For an overall comparison of algorithms, we
report the global success rate (GSR) of a stochastic optimization
method, which is defined as the mean success rate for all bench-
mark problems tested (nb), i.e. GSR =∑nb

i=1(SRi/nb) where SRi is
the success rate in the problem i. The results indicate that the GSR

Fig. 1. Global success rate (GSR) versus Itermax/Genmax (without using Scmax)
of SA, DE, DETL, PSO and GA for benchmark problems. Algorithm parameters:
NS × NT = NP = np = Npop = 10nvar.
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Table 3
Global success rate (GSR) versus Scmax of SA, DE, DETL, PSO and GA for benchmark
and VLE modeling problems. Algorithm parameters: NS × NT = NP = np = Npop = 10nvar.

Method Scmax
a GSR (%) for

Benchmark VLE-LS VLE-EIV

SA 6nvar 64 14 35
12nvar 65 37 38

DE 6nvar 92 3 67
12nvar 94 12 67

DETL 6nvar 89 15 63
12nvar 90 33 61

PSO 6nvar 65 2 0
12nvar 65 7 4

GA 6nvar 59 4 0
12nvar 70 9 0

a Itermax/Genmax is restricted to a maximum of 1500.

of DE and DETL is superior to other methods tested for solving the
benchmark problems using either SC1 or SC2 as the stopping con-
dition (see Fig. 1 and Table 3). GSR of DE and DETL is higher than
80% and the number of successes increased as the Itermax/Genmax

and Scmax increased. Note that GA outperformed the SA and PSO in
solving benchmark problems especially for SC1, with a GSR > 75%.
It appears that SA and PSO provide very similar GSR, and they are
the worse performers especially if SC1 is used alone as the stop-
ping condition. Though SA and PSO showed the worst performance,
their success rate can be still considered competitive for several
benchmark problems. In particular, both SA and PSO showed a high
success rate for Zakharov, HAR3, ROS10, ROS5 and ROS2 functions.

By examining performance at different levels of computational
effort, our data indicate that all methods may fail to locate the global
optimum depending on the algorithm parameters; see results
reported in Fig. 1 and Table 3. These failures are due to the pres-
ence of local optima in most of the benchmark problems and due
to the narrow global minimum region of some challenging objec-
tive functions [16]. In some multivariable problems, the SR of all
methods decreases due to the increase in the complexity of solution
space. As indicated by Ali et al. [19], problems with higher dimen-
sion are expected to be more difficult to solve than those with lower
dimension. In general, the reliability and computational effort of the
methods increase with NS × NT (=NP = np = Npop), Itermax/Genmax and
Scmax. However, the reliability of the methods may be poor when
the Itermax/Genmax is limited to low values especially for functions
with many decision variables.

Comparing the performance of stochastic methods, each fol-
lowed by the quasi-Newton method, at the same level of
computational effort using NFE as reference and SC1 as the stopping
criterion, the GSR of DE and DETL is better than that obtained for SA,
GA and PSO especially in early iterations (Fig. 1). But, as the num-
ber of generations/iterations increases, GA performs relatively well
among the tested methods. Note that DE dominates the other algo-
rithms over most of the iteration/generation values tested. DETL
has also a good performance and may require lower NFE than the
other stochastic methods using SC1 alone as the stopping crite-
rion for the benchmark problems tested (see Tables 4 and 5). The
NFE of DE, PSO, SA and GA is almost the same when SC1 is used
as stopping criterion, as shown in Table 4. The percentage reduc-
tion in total NFE of DETL compared to other stochastic methods for
SC1 is summarized in Table 5. Overall, a reduction from 0.3 to 89%

Table 4
NFE of SA/GA/PSO/DE for solving benchmark problems with SC1 alone as the stopping criterion.

Fobj nvar NFE for Itermax or Genmax
a

50 100 250 500 750 1000 1500

ROS2 2 1,039 2,035 5,028 10,026 15,026 20,025 30,025
HAR3 3 1,556 3,055 7,551 15,051 22,550 30,051 45,051
SHE5 4 2,083 4,081 10,069 20,064 30,063 40,063 60,062
ROS5 5 2,668 5,156 12,637 25,123 37,613 50,108 75,102
HAR6 6 3,196 6,189 15,167 30,171 45,168 60,168 90,167
ROS10 10 5,414 10,479 25,438 50,375 75,357 100,341 150,321
ROS20 20 10,934 21,283 51,343 101,243 151,255 201,093 301,048

a Algorithm parameters: NS × NT = NP = np = Npop = 10nvar.

Table 5
Percent reduction in NFE of DETL for solving benchmark problems with SC1 alone as the stopping criterion.

Fobj Percent reduction in NFE for Itermax or Genmax
a

50 100 250 500 750 1000 1500

ZAK20 1.48 0.64 0.33 0.16 0.10 0.08 0.05
ZAK10 1.65 0.88 0.30 −0.78 −20.82 −34.17 −48.88
ZAK5 1.57 0.70 −37.73 −60.69 −69.60 −73.88 −78.62
ZAK2 −34.79 −59.26 −76.76 −83.83 −86.16 −87.33 −88.96
ROS20 − 2.59 0.65 −2.00 −5.89 −9.44 −14.31
ROS10 2.62 1.03 0.14 −0.93 −2.27 −3.68 −4.09
ROS5 1.14 0.25 0.13 −0.31 −0.83 −4.78 −17.65
ROS2 0.57 −3.90 −41.64 −64.45 −72.73 −77.54 −82.82
GP −16.87 −50.21 −72.82 −81.43 −84.98 −86.37 −88.74
mHB −7.56 −42.18 −69.50 −79.59 −83.91 −85.97 −88.44
RAS20 – – – – – – –
GW20 1.49 0.66 −14.25 −41.53 −52.67 −58.41 −64.84
HAR3 −14.49 −48.51 −71.56 −79.53 −83.17 −84.40 −87.00
HAR6 0.95 −8.09 −42.66 −58.73 −64.62 −62.49 −65.02
SHE5 1.92 −1.15 −24.26 −46.28 −59.56 −61.72 −67.84
SHE7 1.78 −3.40 −31.76 −54.03 −63.46 −67.83 −70.99
SHE10 1.81 −2.33 −34.86 −55.80 −64.94 −68.52 −74.06

a % reduction = 100(NFE of DETL − mean NFE of other stochastic methods tested)/mean NFE of other stochastic methods tested. The symbol “–” indicates that NFE is not
reported because the stochastic method showed a 0% SR.
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Table 6
NFE of SA, DE, DETL, PSO and GA for solving benchmark problems using SC2 alone as the stopping criterion.

Fobj Scmax NFE fora

SA DE DETL PSO GA

ZAK20 6nvar 300,235 103,138 129,553 57,265 73,060
12nvar 300,237 272,956 287,243 181,470 166,995

ZAK10 6nvar 44,253 105,930 44,436 17,413 12287
12nvar 124,614 150,117 54,955 82,311 33499

ZAK5 6nvar 5,597 38,214 6,701 4,400 2,867
12nvar 12,591 40,114 7,340 21,783 6,286

ZAK2 6nvar 607 3,057 625 733 491
12nvar 1,159 5,064 681 1,747 989

ROS20 6nvar 285,359 302,174 146,430 208,943 111,088
12nvar 301,206 302,157 237,659 299,870 271,409

ROS10 6nvar 55,526 150,620 52,798 24,103 15,771
12nvar 131,195 150,619 115,299 107,527 38,203

ROS5 6nvar 5,845 16,722 9,533 4,673 3,562
12nvar 14,495 50,768 22,394 12,876 6,425

ROS2 6nvar 1,260 786 864 666 699
12nvar 1,991 3,345 1,636 1,122 1,066

GP 6nvar 736 1,709 725 655 567
12nvar 1,218 3,637 907 1,409 970

mHB 6nvar 683 1,796 731 613 527
12nvar 1,302 4,488 1,056 1,289 951

RAS20 6nvar – – – – –
12nvar – – – – –

GW20 6nvar 1,695 4,687 1,415 1,081 1,126
12nvar 2,921 5,293 1,566 2,038 2,114

HAR3 6nvar 280,305 232,381 49,720 194,233 141,097
12nvar 300,842 257,391 59,817 301,507 297,881

HAR6 6nvar 2,511 6,891 4,165 1,825 1,944
12nvar 5,510 12,674 7,237 3,620 3,674

SHE5 6nvar 2,431 7,943 4,410 1,860 1,931
12nvar 5,382 12,744 5,672 3,469 3,815

SHE7 6nvar 2,627 8,282 4,267 1,768 2,037
12nvar 5,616 12,177 5,901 3,536 3,532

SHE10 6nvar 6,291 19,163 7,041 3,981 4,096
12nvar 13,864 21,782 11,105 7,840 8,624

a Itermax/Genmax is restricted to a maximum of 1500. Algorithm parameters: NS × NT = NP = np = Npop = 10nvar. The symbol “–” indicates that NFE is not reported because the
stochastic method showed a 0% SR.

in NFE of DETL is achieved in the benchmark problems tested. As
stated earlier, DETL is a hybrid strategy that integrates the strong
features of DE and TS. The tabu concept has considerable influence
on the performance of DETL resulting in lower NFE [16]. However,
the improvement in the convergence rate of DETL may not be the
same for all the functions and depends on problem dimensionality
and complexity.

If SC2 is used alone as the convergence criterion (along with
Itermax/Genmax set at 1500 for keeping the computational effort
within reasonable values), the results indicate that DE and DETL
can achieve a higher SR than those obtained for GA, PSO and SA (see
Table 3). At tested values of SC2, SA, PSO and GA gave similar GSR
for benchmark problems. It is interesting that the NFE of GA is lower
than those of SA, DE, DETL and PSO using SC2 especially for multi-
variable problems as shown in Table 6. For this stopping condition,
DE generally required more NFE than the other algorithms.

When we examine the results for individual problems, all
stochastic methods show high reliability for Zakharov and
HAR3 functions irrespective of the stopping criterion used (i.e.,
Itermax/Genmax or Scmax). In fact, the global optimum is found
even using low values of these stopping conditions. DE and DETL
achieved high SR values and their performance is usually better

than that of GA, SA and PSO for both SC1 and SC2 in almost all
benchmark problems. If SC1 is used as the stopping condition, the
reliability of SA is low compared to DE, DETL, GA and PSO for func-
tions ROS10, ROS5, GP2, mHB and GW20, and PSO has the lowest
SR for functions ROS20, SHE5, SHE7, SHE10 and HAR6. In the case of
RAS20, the tested stochastic methods performed poorly; this indi-
cates that they are affected by the huge number of local minima
present in this challenging benchmark problem. For difficult bench-
mark problems, the performance of all stochastic methods could
be improved using larger Itermax/Genmax (i.e. >1500) or Scmax (i.e.
>12nvar) but at the expense of a significant computational effort.
With respect to the stopping condition SC2, the SR of SA, on average,
is low for GP, mHB and GW20 whereas PSO is the worst performer
for ROS20, SHE5, SHE7, SHE10 and HAR6. Further, GA failed to find
the global optimum in ROS2, ROS5 and ROS10 several times.

In the tests performed on the benchmark problems, the CPU
time ranged from 0.02 to 0.4 s for SA, from 0.04 to 3.3 s for DE, from
0.07 to 3.9 s for DETL, from 0.03 to 3.1 s for PSO, and from 0.04 to
3.0 s for GA, respectively. Obviously, it increases as NFE increases
for all stochastic methods. SA took less CPU time compared to the
population-based DE, DETL, PSO and GA because one iteration of SA
implies less memory requirements and arithmetic operations com-
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pared to the requirements of one generation for population-based
methods. Though DETL may require less NFE especially for SC1, it
took more CPU time compared to the other four stochastic methods
studied. As noted by Srinivas and Rangaiah [16], the diversifica-
tion stage associated with tabu concept in DETL requires additional
computational effort especially for problems such as benchmark
functions where each function evaluation requires insignificant
computational time. In summary, our results indicate that DE and
DETL offer the best compromise between reliability and efficiency
for solving the benchmark problems used in this study.

5. Parameter estimation problems in VLE data modeling

In this study, the five stochastic methods are tested and com-
pared for several sets of binary VLE data, which have been studied
by Gau et al. [3], Alvarez et al. [4], Gau and Stadtherr [6,7],
Dominguez et al. [9], Srinivas and Rangaiah [10], Bonilla-Petriciolet
et al. [11] and Bollas et al. [13]. These authors have used both LS and
EIV formulations, local composition models and deterministic or
stochastic global optimization methods for solving parameter esti-
mation problems in VLE data modeling. Details of all examples (i.e.,
conditions of experimental data, thermodynamic models, objective
function, decision variables and global optimum) are reported in
Tables 7 and 8. All the experimental data are taken from DECHEMA
collection. According to reported studies, there are at least two local
minima (including the global minimum) in the specified interval
for decision variables of all parameter estimation problems. The
global optimum found for each example is in agreement with that
reported in the literature. In short, the selected VLE problems are
multimodal with dimension ranging from 2 to 20 decision vari-
ables. These problems have a variety of inherent difficulty and,
as indicated, have been used to test different optimization strate-
gies [3,4,6,7,9–11,13]. Therefore, the number and features of the
selected VLE problems are sufficient to demonstrate and compare
the performance of the tested stochastic methods.

5.1. Parameter tuning

Two examples were used for parameter tuning of all stochastic
optimization methods. First example is the VLE data for the binary
system tert butanol + 1 butanol at 100 mmHg. This system was
studied by Gau et al. [3] using interval analysis and classical least
squares formulation, while Alvarez et al. [4] and Bonilla-Petriciolet
et al. [11] have applied GA and SA for solving this parameter estima-
tion problem. We optimize Eq. (9) with respect to the Wilson model
parameters inside the interval: �1 and �2 ∈ (−8500, 320000). The
initial values for each calculation and for all stochastic methods are
randomly generated within these bounds. The vapor pressure is cal-
culated by Antoine equation using the model parameters reported
in Gau et al. [3].

The second example refers to modeling of VLE data of the binary
system benzene + hexafluorobenzene using the error-in-variable
formulation. This system has been studied, for example, by Gau
and Stadtherr [7] using interval analysis whereas Srinivas and Ran-
gaiah [10] and Bonilla-Petriciolet et al. [11] used the RTA and SA,
respectively. One data set at 500 mmHg, which includes experi-
mental data from 16 experiments, is used, and the data modeling
is performed using the Wilson equation for liquid-phase activity
coefficients and ideal gas model. Following Gau and Stadtherr [7],
a standard deviation of (0.003, 0.0029, 1.7, 0.083) is assumed for
state variables (x1, y1, P, T). The objective function is defined by Eq.
(15) and it is optimized with respect to 34 decision variables. The
initial intervals on the independent state variables �z = (�xij, �T) are
set using plus and minus three standard deviations (±3�) while
the intervals for the Wilson model parameters are defined as �1,
�2 ∈ (−10000, 200000). Ta
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As before, the parameters of each stochastic method are tuned
one at a time while keeping others fixed at their nominal val-
ues. Based on results of parameter tuning, not given in this paper
for brevity, the suggested values of parameters in the stochastic
method for VLE data modeling are reported in Table 2. The sug-
gested values of some parameters in GA, DE and DETL are slightly
different from those suggested for benchmark problems due to the
different characteristics of objective functions (e.g., only a few min-
ima in the VLE parameter estimation problems and non-linearity).

5.2. Results and discussion

All VLE examples are solved 100 times each, starting from a dif-
ferent, random point inside specified bounds on decision variables,
and the performance of stochastic methods is compared using SR,
NFE and CPU time for both stopping criteria—SC1 and SC2. The
results of solving the VLE parameter estimation problems for dif-
ferent values of these stopping conditions are shown in Figs. 2–4
and Tables 3, 9, 10 and 11. In the first instance, to directly compare
the performance of algorithms, we keep their numerical effort the
same via Itermax/Genmax (i.e., without using Scmax) and compare the
results obtained in terms of GSR. The performance of the methods
tested is depicted graphically in Figs. 2 and 3 to illustrate their GSR
as a function of Itermax/Genmax for all VLE problems. These figures
show that the reliability of the stochastic methods highly depends
on and increases with Itermax/Genmax. As expected, the reliability of
all the methods increases with NS × NT (=NP = np = Npop) as shown in
Fig. 2b. The stochastic methods may fail in the global minimization
of the objective functions especially for EIV problems. For illustra-
tion, plots of SR versus Itermax/Genmax for selected VLE problems
are given in Fig. 4.

Fig. 2. Global success rate (GSR) versus Itermax/Genmax (without using Scmax) of SA,
DE, DETL, PSO and GA for VLE data modeling problems using LS formulation: (a)
NS × NT = NP = np = Npop = 10nvar; and (b) NS × NT = NP = np = Npop = 50nvar.
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Table 9
NFE of SA, DE, PSO and GA for solving VLE modeling problems using SC1 alone as the stopping criterion; algorithm parameters: NS × NT = NP = np = Npop = 10nvar.

No. nvar NFE for Itermax or Genmax

50 100 250 500 750 1000 1500

1 2 1,071 2,063 5,067 10,063 15,064 20,066 30,065
6 3 1,685 3,238 7,729 15,222 22,712 30,211 45,209
11 34 18,661 36,201 92,953 179,242 264,725 354,938 524,500
12 36 19,817 38,492 97,994 193,175 283,661 374,183 556,462
13 22 11,991 23,016 56,515 113,674 169,235 224,882 338,271
15 24 13,110 25,086 62,899 129,606 192,706 253,423 371,940

Table 10
Percent reduction in the NFE of DETL for solving VLE modeling problems using SC1 alone as the stopping criterion.

No. Percent reduction in NFE for Itermax or Genmax
a

50 100 250 500 750 1000 1500

1 −11.84 −24.21 −51.17 −63.11 −68.36 −70.29 −74.28
2 – −38.52 −59.35 −71.62 −75.75 −78.57 −80.85
3 −35.36 −41.26 −60.20 −71.40 −74.46 −78.26 −82.08
4 −7.79 −27.19 −41.52 −54.68 −55.58 −58.46 −63.71
5 −6.77 −30.62 −56.05 −68.97 −73.82 −77.34 −78.33
6 0.77 −1.69 −14.93 −39.11 −47.15 −58.94 −66.06
7 −12.45 −20.66 −40.80 −55.29 −62.09 −67.35 −68.68
8 −9.28 −25.24 −51.94 −63.84 −71.61 −74.20 −75.75
9 −7.78 −16.42 −39.80 −52.88 −58.89 −63.11 −67.02
10 −10.96 −22.83 −50.67 −65.97 −68.96 −71.56 −75.45
11 – – 3.97 −10.60 −30.07 −39.62 −42.79
12 – – – – – – –
13 – – – – – – –
14 – – 5.48 0.03 −0.50 −8.18 −24.63
15 – – – −11.30 −32.43 −42.77 −49.93
16 – – – −10.01 −30.26 −40.22 −45.90

a % reduction = 100(NFE of DETL − mean NFE of other stochastic methods tested)/mean NFE of other stochastic methods tested. The symbol “–” indicates that NFE is not
reported because the stochastic method showed a 0% SR.

The reliability of SA is better than that of DE, DETL, PSO and GA
for tested VLE examples using LS formulation and SC1. It is inter-
esting to observe that the behavior of each stochastic method in
VLE problems using LS formulation is consistent. Specifically, SA
generally outperformed other stochastic methods for solving VLE
problems in terms of success rate throughout the tested range of
Itermax/Genmax. Only for VLE problems No. 6 and 9, SA showed 100%
reliability for the global minimization of the objective function if
proper values of Itermax are used. The SR of SA ranged from 9 to
100% in VLE problems No. 1–10. On the other hand, DE and DETL
can perform reasonably well in VLE problems using LS formulation
(GSR ∼= 86%), but they showed the best performance for problems
based on EIV formulation and using SC1 alone as the stopping con-

Fig. 3. Global success rate (GSR) versus Itermax/Genmax (without using Scmax) of SA,
DE, DETL, PSO and GA for VLE data modeling problems using EIV formulation. Algo-
rithm parameters: NS × NT = NP = np = Npop = 10nvar.

dition. Specifically, Fig. 3 shows that the GSR of SA is better than
those obtained for DE and DETL in early iterations for EIV problems,
and vice versa as the number of generations/iterations increases.
These results suggest that SA may be preferred if a small number of
function evaluations (i.e. fewer iterations/generations) is allowed
to solve EIV problems using the SC1 as the convergence criterion.
Otherwise, DE and DETL are more suitable if a higher number of
function evaluations are permitted for this stopping condition. The
exceptions are the EIV problems No. 13 and 14 for which the SR of
SA is less than 20% but better than that obtained for DE (SR ≤ 6%)
and DETL (SR ≤ 1%) in the range of iterations/generations tested. In
particular, these VLE problems involve challenging global optimiza-
tion functions and illustrate the difficulty of locating the globally
optimal parameters for VLE data modeling by the EIV approach. The
maximum GSRs of DE and DETL are 66 and 63% for VLE problems
No. 11–16, whereas SA showed a maximum GSR of 39% in these
problems (Fig. 3).

Surprisingly, GA performed worse than all other stochastic
methods tested for both LS and EIV formulations using SC1 as the
stopping condition. GA may achieve a maximum GSR of 45% for LS
problems and 1% for EIV problems at tested conditions. It appears
that GA is frequently trapped by the local minima of the objective
functions of selected VLE problems especially for EIV formulation.
This could be because all minima found for VLE parameter estima-
tion problems generally are located in a relatively narrow valley in
the parameter space and also these minima may be comparable in
some problems [3]. Upon applying PSO with SC1, the performance
results were better than those of GA in terms of GSR for both LS
and EIV formulations (Figs. 2 and 3). The maximum GSR obtained
for PSO was 87% for LS problems and 10% for EIV problems, respec-
tively. Results reported in Fig. 2b indicate that PSO is competitive
if a higher value of Npop (e.g., 50nvar) is used and its reliability may
be comparable to that of DE and DETL. But, on average, PSO is less
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Table 11
NFE of stochastic optimization methods for solving VLE modeling problems using Scmax alone as the stopping condition (SC2).

No. Scmax NFE fora

SA DE DETL PSO GA

1 6nvar 786 – 877 – –
12nvar 1,892 1,311 1,777 – 1,063

2 6nvar 734 – 902 – 585
12nvar 1,607 1,664 1,718 – 990

3 6nvar 762 – 882 – –
12nvar 1,750 1,557 1,592 – 1,054

4 6nvar 715 535 928 – 568
12nvar 1,087 1,711 1,564 1,047 1,043

5 6nvar 862 632 830 611 669
12nvar 1,497 1,678 1,327 1,205 1,036

6 6nvar 2,269 1,923 3,024 1,623 1,841
12nvar 3,625 4,003 5,218 2,520 2,531

7 6nvar 704 557 927 – 582
12nvar 1,317 1,353 1,900 – 1,064

8 6nvar 871 – 1,002 – 592
12nvar 1,578 1,583 1,756 – 1,101

9 6nvar 730 – 854 – –
12nvar 1,617 1,900 1,911 1,021 1,036

10 6nvar 836 – 1,015 – 579
12nvar 1,664 1,561 1,653 – 1,005

11 6nvar 530,150 520,573 299,739 – –
12nvar 530,803 520,549 298,581 397,855 –

12 6nvar 323,665 350,029 – – –
12nvar 330,439 330,855 – – –

13 6nvar 330,473 339,809 – – –
12nvar 330,487 374,026 – – –

14 6nvar 552,509 552,966 274,999 – –
12nvar 551,682 553,199 279,205 453,666 –

15 6nvar 368,086 372,382 178,550 – –
12nvar 367,988 371,841 180,862 244,653 143,024

16 6nvar 331,555 335,159 171,136 – –
12nvar 341,566 339,205 182,271 186,245 –

a Itermax and Genmax are restricted to a maximum value of 1500. Algorithm parameters: NS × NT = NP = np = Npop = 10nvar. The symbol “–” indicates that NFE is not reported
because the stochastic method showed a 0% SR.

successful than DE and DETL for both types of parameter estima-
tion problems. Overall, GA and PSO performed poorly in VLE data
modeling problems with EIV formulation.

The other three stochastic methods tested may reach a high reli-
ability (i.e., SR > 70%) if proper values of algorithm parameters are
used, in VLE examples using SC1 and both LS and EIV formulations.
However, this good performance may be at the expense of compu-
tational effort for SA and DE, whereas DETL can achieve a high SR
using lower NFE (Tables 9 and 10). The computational efficiency of
DETL is usually better than that of SA, GA, PSO and DE for both LS
and EIV formulations and SC1. Specifically, the percentage reduc-
tion in NFE of DETL ranged from 2 to 82% for LS functions and from
0.5 to 50% for EIV problems compared to other stochastic methods
tested.

The performance of five stochastic methods for VLE examples
No. 1–16 but using SC2 alone as a stopping condition is reported
in Tables 3 and 11. As before, in these tests, Itermax/Genmax is set at
1500. The results indicate that the GSR of SA and DETL is better com-
pared to DE, PSO and GA for this convergence criterion and using
LS formulation, whereas DE and DETL offer the best reliability for
EIV problems. Note that, even though EIV problem involves many
decision variables, DE and DETL showed a high SR for problems No.
11 and 14–16 using either SC1 or SC2 as the stopping condition. The
performance of stochastic methods improves as SC2 increases in all

VLE problems. However, all methods showed poor performance in
VLE problems No. 13 and 14 (i.e., the best SR was 16% for SA). With
respect to NFE, it appears that the convergence rate of GA is faster
compared to SA, DE, DETL and PSO using SC2. Unfortunately, GA
showed generally low SR for solving VLE problems using both LS
and EIV formulations.

Our numerical experience indicates that the reliability of all the
stochastic methods is better using SC1 compared to that of SC2. This
may be because of the slow convergence of some stochastic meth-
ods, which may require more iterations/generations to escape from
the local minimum region reached in the initial iterations. However,
the maximum number of generations/iterations to find the global
optimum cannot be judged a priori for an arbitrary function. In some
problems, this may lead to unnecessary function calls when the
minimum is reached long before the maximum number of gener-
ations/iterations, thus increasing computational effort. Therefore,
to avoid the premature convergence and favor the performance of
stochastic methods, it would be useful to simultaneously employ
a combination of suitable values for both SC1 and SC2 as stop-
ping conditions (i.e., the algorithm terminates after satisfying either
Itermax/Genmax or Scmax).

The CPU time needed to perform the global optimization for the
VLE problems considered ranged from 0.02 to 13.5 s for SA, from
0.47 to 23.7 s for PSO, from 0.02 to 22.9 s for DE, from 0.02 to 18.9 s
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Fig. 4. Success rate (SR) versus Itermax/Genmax (without using Scmax) of SA, DE, DETL,
PSO and GA for selected VLE problems using LS and EIV formulation: (a) No. 3, (b)
No. 6 and (c) No. 11. Algorithm parameters: NS × NT = NP = np = Npop = 10nvar.

for DETL, and from 0.02 to 22.5 s for GA, respectively. The comput-
ing time of stochastic methods increases proportional to problem
dimensionality (i.e., number of decision variables). However, it
appears that for large NFE and multivariable problems similar to
those tested, both SA and DETL are more efficient in terms of CPU
time than other stochastic methods.

Finally, our study shows that the reliability and efficiency of
the different stochastic optimization methods vary significantly
for different VLE modeling problems and depends on the stop-
ping criterion used. In general, VLE modeling using both LS and EIV
formulations is a difficult global optimization problem and their
characteristics pose a challenge to any optimization technique.
For the many tests performed, DE and DETL are among the best
algorithms and are suitable methods for parameter estimation in
VLE modeling using both LS and EIV formulations. Note that this
conclusion is consistent with the results reported for benchmark

problems, where both DE and DETL offer the best performance for
global optimization of tested functions.

6. Conclusions

In this study, the performance of SA, GA, DE, DETL and PSO has
been tested and compared for VLE modeling using experimental
data for binary systems and both least squares and maximum like-
lihood criterions. Prior to this application, the five methods have
been tested on benchmark problems with multiple minima. The
performance of the stochastic optimization methods tested varies
significantly between different problems and is dependent on the
stopping criterion used, problem dimensionality and difficulty. For
benchmark problems, DETL and DE are better than the other meth-
ods tested in terms of reliability; on the other hand, SA required the
least CPU time while DETL required the least NFE. For VLE param-
eter estimation using the least squares criterion, GA is the worst
performer whereas SA, DE, DETL and PSO show acceptable per-
formance. Owing to the increase of problem dimensionality and
difficulty in the EIV approach, all stochastic methods face difficul-
ties in finding the global minimum for VLE data modeling. In some
EIV problems, the performance of all stochastic methods tested
is poor and not satisfactory. Also, there is a significant increase
in the computational effort for the data fitting, caused by prob-
lem dimensionality. Overall, DE and DETL were found to perform
better than other algorithms tested in terms of success rate for
parameter estimation in VLE data modeling using both LS and EIV
formulations. In particular, DETL offers a significant reduction in the
computational time (both NFE and CPU time), which is attractive
for solving VLE problems involving many parameters. In summary,
results of this study show the strengths and weaknesses of sev-
eral classical and recent stochastic global optimization methods for
solving benchmark and VLE data modeling problems. They further
show that DE and DETL are good alternatives and offer compara-
ble or better performance than SA, PSO and GA methods for these
global optimization problems. For further studies, we suggest the
application and comparison of alternative stochastic optimization
methods such as Ant Colony Optimization and Harmony Search
for solving parameter estimation problems in phase equilibrium
modeling.

List of symbols
A amplification factor
C number of components
C1, C2 cognitive and social parameters of Particle Swarm Opti-

mization
CR crossover constant
Fobj objective function
Genmax maximum number of generations
Itermax maximum number of iterations
k iteration counter
�l continuous variable vector
NFE number of function evaluations
Npop population size in Genetic Algorithm
NP population size
NS number of cycles of SA for updating decision variables
NT number of iterations before annealing temperature

reduction
np swarm size (i.e., number of particles)
nvar number of decision variables (i.e., parameters in parame-

ter estimation problems)
nh neighborhood size in Particle Swarm Optimization
ndat number of experiments
npar number of parameters
nest number of state variables
P pressure
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P0
i

vapor pressure of pure component i
Pcros crossover probability
Pmut mutation probability
qij Observation
rij independent variables
Ri random number
si,j position of particles in Particle Swarm Optimization
Scmax maximum number of successive iterations without

improvement in the best function value
SR success rate
tls tabu list size
T temperature
Tr tabu radius
TSA annealing temperature of Simulated Annealing
Ui,G+1 trial vector
Vi,G+1 mutant vector
Vi,j velocity of particles in Particle Swarm Optimization
Vmax maximum velocity of particles in Particle Swarm Opti-

mization
VM step length vector
W inertia weight factor of Particle Swarm Optimization
x,y mole fraction
Xi,G target vector
zt

ij
unknown “true” values of state variables

� activity coefficient
� parameter of thermodynamic model
�i standard deviation associated with the measurement of

state variable i
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