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Introduction 
 
Azeotropy is a special case of phase equilibrium phenomenon that occurs in many 
industrial applications, and its presence restricts the separation amount of a 
multicomponent mixture that can be achieved by distillation. Azeotropes can be 
classified as homogeneous and heterogeneous, depending on the number of liquid 
phases involved in the phase equilibrium condition. In the context of process system 
engineering, the description of homogeneous azeotropy is essential for the selection 
of strategies in synthesis, design and operation of separation units. Usually, excess 
Gibbs energy models are used for modeling vapor-liquid equilibrium (VLE) in 
azeotropic mixtures, due to its simplicity and predictive capabilities. However, 
proper parameters of these models are necessary for the reliable design of separation 
systems. Usually, experimental data are used to determine the adjustable parameters 
of local composition models for vapor-liquid equilibrium modeling.  
 
The parameter estimation problem for vapor-liquid equilibrium modeling in 
azeotropic mixtures is a challenging numerical task. This problem involves fitting the 
thermodynamic model to experimental VLE data by minimizing a suitable objective 
function. However, this objective function may become non-convex due to non-
linear form of the thermodynamic equations. Therefore, the parameter estimation 
requires the solution of a nonlinear and difficult optimization problem even for 
relatively simple thermodynamic equations such as Wilson, UNIQUAC and NRTL 
[1, 2]. 
 
Recently, some studies have shown that traditional approaches used for parameter 
estimation in local composition models have several limitations [1-3]. Most of the 
existing methods for solving optimization problems are local in nature, and, at best, 
yield only local solutions [4]. It is important to note that local optimal parameters 
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(i.e. local solutions of the parameter estimation problem) affect the predictive 
capability of thermodynamic models causing qualitative and quantitative 
discrepancies of phase behavior [3]. In particular for NRTL model, failures in the 
data correlation process may result in incorrect predictions of the azeotropic states, 
and in qualitative discrepancies of the phase behavior such as prediction of spurious 
phase split and modeling of homogeneous azeotrope as heterogeneous [1,2]. 
Undoubtedly, these failures imply errors and uncertainties in process design and 
erroneous conclusions about model performance. Reliable optimization strategies 
must be used for determining the adjustable parameters of NRTL equation, and other 
local composition models for VLE modeling in azeotropic mixtures.  
 
In this context, stochastic optimization methods are robust numerical strategies that 
offer several advantages with respect to conventional optimization methods, and are 
very attractive for its application in vapor-liquid equilibrium modeling with 
homogeneous azeotropy. Based on this fact, in this study two stochastic methods are 
used and compared for parameter estimation in vapor-liquid equilibrium modeling 
using NRTL equation. Specifically, the performance of Simulated Annealing and 
Particle Swarm Optimization is tested and compared in this thermodynamic 
application. In addition, we illustrate the effect of NRTL adjusted parameters by 
considering the possible qualitatively errors in the prediction of homogeneous 
azeotropes.  
 
Parameter estimation for VLE modeling 
 
According to classical Thermodynamics, the equilibrium between vapor and liquid 
phases in a c multicomponent system implies that temperature (T), pressure (P) and 
the chemical potential of each component i must be the same in both phases. At low 
pressure, the VLE conditions can be simplified because the fugacity coefficient of 
pure components nearly cancels each other, and Poynting corrections usually are 
very close to unity. Neglecting these corrections, now yields: 

 
ciPyPx iiii ,...,1for    0                                                                     (1) 

 
where i is the activity coefficient of component i, 0

iP  is the vapor pressure of pure 
component i, xi and yi are the equilibrium mole fraction at liquid and vapor phase, 
respectively. Using Eq. (1), the non-ideal behavior for non-ideal systems is described 
solely by liquid-phase activity coefficient. Therefore, the objective function 
commonly used for VLE data modeling is given as: 
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where exp

i  and calc
i  are the experimental and calculated values for the activity 

coefficient of component i and ndat is the number of experimental data used for 
parameter estimation, respectively.  
 
For the case of complete VLE data (i.e., x y P at constant T, or x y T at constant 
P), excess Gibbs energy equations are widely applied for phase equilibrium 
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modeling. Given VLE measurements and assuming an ideal vapor phase, the 
experimental values for the activity coefficients can be calculated from experiments 
and using Eq. (1). There are several local composition models for the calculation of 
liquid-phase activity coefficients. Particularly, NRTL equation is a flexible local 
composition model that can be used for the correlation of i, and for representing 
complex VLE behaviors in multicomponent systems. For a binary mixture, the 
activity coefficients using the NRTL model are given by 
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where three adjustable parameters are necessary for each binary pair: 1 = g12 � g22,  

2 = g21 � g11, and the nonrandomness factor 12 = 21. Parameters of the liquid-phase 
model are estimated by minimizing Eq. (2). Note that the third parameter 12 can be 
treated as adjustable, but several authors have suggested that better it should be fixed 
between 0.2 and 0.47. We will show that this choice is very important due to it may 
cause qualitative errors in the prediction of azeotropic states. 
 
As indicated, several studies have shown that the highly non-linear form of local 
composition models makes that Fobj is non-linear, potentially non-convex with 
several local minima points within the specified bounds. Previous studies have 
shown that parameter estimation for VLE data modeling involves the solving of a 
global optimization problem [1 - 4]. In particular for NRTL model, due to its 
flexibility, this model can predict more phases that actually exist in the system if the 
parameter estimation procedure is not performed adequately. This qualitative 
discrepancy occurs more frequently in the VLE modeling of azeotropic mixtures [4]. 
Therefore, it is necessary to apply a suitable numerical strategy for reliably solving 
the parameter estimation in VLE modeling. In this study we have tested the 
numerical performance of two stochastic optimization methods for VLE data fitting 
of binary systems using NRTL equation. 
 
Description of optimization strategies: Particle Swarm Optimization and 
Simulated Annealing 
 
We have used the Simulated Annealing (SA) and Particle Swarm Optimization 
(PSO) for solving the VLE parameter estimation problem with NRTL model. Both 
stochastic methods are considered global optimization strategies, and they have 
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found several applications in science and engineering, including thermodynamic 
calculations. Specifically, SA simulates the process of slow cooling of metals to 
achieve the minimum function value in a minimization problem. The cooling 
phenomenon is modeled by controlling a temperature like parameter introduced with 
the concept of Boltzmann probability distribution. By a controlled temperature 
reduction as the algorithm proceeds, the convergence of the algorithm can be 
controlled. We have used the SA code developed by Goffe et al. [5], which is based 
on the algorithm developed by Corana et al. [6]. On the other hand, PSO is a novel 
and promising population based method that belongs to the class of swarm 
intelligence algorithms. Kennedy and Eberhart [7] introduced this strategy for global 
optimization, which is inspired by the social behavior of flocking swarms of birds 
and fish schools. It exploits a population of potential solutions to identify promising 
areas for optimization. In this context, the population of potential solutions is called 
the swarm, and each solution is called particle. Particles are conceptual entities, 
which fly through the multi-dimensional search space. The success histories of the 
particles influence both their own search patterns and those of their peers. Each 
particle has two state variables: its current position and its current velocity. In the 
local version of PSO, which is used in this study, the search is focused on promising 
regions by biasing each particle�s velocity toward both the particle�s own 
remembered best position and the communicated best ever neighborhood location. 
The relative weights of these two positions are scaled by the social and cognitive 
parameters. Once the particles are all initialized, the positions and velocities of all 
the particles are modified. After calculating the velocities and position for the next 
iteration, the current iteration is completed. The best particle is only updated when a 
new one is found yielding a decrease in the objective function value. This process is 
performed until satisfies the stopping criterion.  
 
Results and discussion 
 
With illustrative purposes, we have tested the performance of SA and PSO for the 
parameter estimation in binary VLE data of the system water + 1,2 ethanediol at 430 
mmHg. This system has no azeotropes but its VLE parameter estimation problem is 
very challenging [1,2]. Thus, the global optimum of selected example is well 
identified. Equation (2) is optimized with respect three parameters of NRTL inside 
following intervals: 1, 2 (-2000, 5000) and 12 (0.01, 10.0). Experimental data 
are taken from Dechema collection. We note that the global minimization of 
objective function can be done as an unconstrained optimization problem using 
NRTL equation. This VLE problem was solved 100 times using random initial 
values, via different random number seed for both SA and PSO. Figure 1 shows the 
plot of success rate (SR) versus the number of iterations for both SA and PSO. Note 
that SR is defined as the number of runs out of 100 that satisfy the condition  fopt � 
fcalc   10-04; where the known global optimum of the objective function is fopt, and 
fcalc is the value of objective function calculated by stochastic methods. In first 
instance, to directly compare the performance of algorithms, we keep constant the 
numerical effort via the number of iterations, and compare the results obtained in 
terms of SR. Figure 1 shows that the reliability of the stochastic methods highly 
depends on the maximum number of iterations allowed. It is noticed that as the 
number of iterations increased, the success rate to find the global optimum of all 
methods also increased. Based on our numerical practice using PSO and SA, we can 
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conclude the reliability of SA is better compared to PSO in terms of both success rate 
and computational time. 
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Figure 1. Success rate (SR) versus iterations of Simulated Annealing and Particle Swarm 
Optimization for parameter estimation in vapor-liquid equilibrium modeling. 

 
 
To illustrate the qualitative discrepancies that may occur in azeotropic predictions by 
fixing parameter 12 to an unsuitable value, we have considered the parameter 
estimation for VLE data of the binary mixture 2,3-dimethyl-2-butane + methanol at 
atmospheric pressure [7]. Experimentally, a homogeneous azeotrope is observed for 
this mixture. Data correlation was performed using NRTL model and SA method. 
For parameter estimation, three scenarios were considered: a) VLE data modeling 
using 12 as an adjustable parameter, b) VLE data modeling using 12 = 0.2 and c) 
VLE data modeling using 12 = 0.4. Results of parameter estimation are given in 
Table 1. In this table, we also report the predicted azeotropes (homogeneous and 
heterogeneous) using adjusted parameters of NRTL model. We can observe that, if 

12 is fixed to 0.2 or 0.4 inside parameter estimation procedure, NRTL model 
predicts simultaneously stable heterogeneous azeotropes (i.e., a vapor-liquid-liquid 
equilibrium), and unstable homogeneous azeotropes. These discrepancies between 
model and experiment are due to the fact that parameter 12 is not used as adjustable 
parameter, and, under these conditions, NRTL model predicts a liquid-liquid split 
while experimentally this phase behavior does not occur. However, when three 
parameters of NRTL are used as optimization variables, this local composition model 
closely match the experimental data, including the presence of a homogeneous 
azeotrope. These results highlight the use of a suitable strategy for parameter 
estimation in VLE modeling in azeotropic systems using NRTL model.  
 
Table 1. Results of VLE data modeling of binary system 2,3-dimethyl-2-butane + methanol 
at atmospheric pressure using NRTL and Simulated Annealing 

 
NRTL parameters Prediction of azeotropes 

12 1 2 Homogeneous Heterogeneous 
0.4447 1454.44 1234.62 Yes No 

0.4 1355.71 1156.13 Yes, Unstable Yes, Stable 
0.2 1026.03 905.01 Yes, Unstable Yes, Stable 
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Concluding remarks 
 
Parameter estimation for VLE modeling using local composition models is a difficult 
global optimization problem, and their characteristics pose a challenge to any 
optimization technique. Our numerical experience indicates that both PSO and SA 
are reliable, if properly implemented, for solving this thermodynamic problem. 
However, it appears that SA is the most suitable method for parameter estimation for 
VLE modeling. Finally, the improper application of NRTL model for data fitting of 
azeotropic mixtures may cause severe qualitative and quantitative discrepancies in 
predicting phase behavior.  
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