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Introduction

Azeotropy is a special case of phase equilibrium phenomenon that occurs in many
industrial applications, and its presence restricts the separation amount of a
multicomponent mixture that can be achieved by distillation. Azeotropes can be
classified as homogeneous and heterogeneous, depending on the number of liquid
phases involved in the phase equilibrium condition. In the context of process system
engineering, the description of homogeneous azeotropy is essential for the selection
of strategies in synthesis, design and operation of separation units. Usually, excess
Gibbs energy models are used for modeling vapor-liquid equilibrium (VLE) in
azeotropic mixtures, due to its simplicity and predictive capabilities. However,
proper parameters of these models are necessary for the reliable design of separation
systems. Usually, experimental data are used to determine the adjustable parameters
of local composition models for vapor-liquid equilibrium modeling.

The parameter estimation problem for vapor-liquid equilibrium modeling in
azeotropic mixtures is a challenging numerical task. This problem involves fitting the
thermodynamic model to experimental VLE data by minimizing a suitable objective
function. However, this objective function may become non-convex due to non-
linear form of the thermodynamic equations. Therefore, the parameter estimation
requires the solution of a nonlinear and difficult optimization problem even for
relatively simple thermodynamic equations such as Wilson, UNIQUAC and NRTL
[1,2].

Recently, some studies have shown that traditional approaches used for parameter
estimation in local composition models have several limitations [1-3]. Most of the
existing methods for solving optimization problems are local in nature, and, at best,
yield only local solutions [4]. It is important to note that local optimal parameters
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(i.e. local solutions of the parameter estimation problem) affect the predictive
capability of thermodynamic models causing qualitative and quantitative
discrepancies of phase behavior [3]. In particular for NRTL model, failures in the
data correlation process may result in incorrect predictions of the azeotropic states,
and in qualitative discrepancies of the phase behavior such as prediction of spurious
phase split and modeling of homogeneous azeotrope as heterogeneous [1,2].
Undoubtedly, these failures imply errors and uncertainties in process design and
erroneous conclusions about model performance. Reliable optimization strategies
must be used for determining the adjustable parameters of NRTL equation, and other
local composition models for VLE modeling in azeotropic mixtures.

In this context, stochastic optimization methods are robust numerical strategies that
offer several advantages with respect to conventional optimization methods, and are
very attractive for its application in vapor-liquid equilibrium modeling with
homogeneous azeotropy. Based on this fact, in this study two stochastic methods are
used and compared for parameter estimation in vapor-liquid equilibrium modeling
using NRTL equation. Specifically, the performance of Simulated Annealing and
Particle Swarm Optimization is tested and compared in this thermodynamic
application. In addition, we illustrate the effect of NRTL adjusted parameters by
considering the possible qualitatively errors in the prediction of homogeneous
azeotropes.

Parameter estimation for VLE modeling

According to classical Thermodynamics, the equilibrium between vapor and liquid
phases in a ¢ multicomponent system implies that temperature (7), pressure (P) and
the chemical potential of each component i must be the same in both phases. At low
pressure, the VLE conditions can be simplified because the fugacity coefficient of
pure components nearly cancels each other, and Poynting corrections usually are
very close to unity. Neglecting these corrections, now yields:

yx. P’ =yP fori=1,..,c (1)

where # is the activity coefficient of component i, P’ is the vapor pressure of pure

component i, x; and y; are the equilibrium mole fraction at liquid and vapor phase,
respectively. Using Eq. (1), the non-ideal behavior for non-ideal systems is described
solely by liquid-phase activity coefficient. Therefore, the objective function
commonly used for VLE data modeling is given as:
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where y and y/*° are the experimental and calculated values for the activity

i

coefficient of component i and ndat is the number of experimental data used for
parameter estimation, respectively.

For the case of complete VLE data (i.e., x—y—P at constant 7, or x—y—7 at constant
P), excess Gibbs energy equations are widely applied for phase equilibrium
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modeling. Given VLE measurements and assuming an ideal vapor phase, the
experimental values for the activity coefficients can be calculated from experiments
and using Eq. (1). There are several local composition models for the calculation of
liquid-phase activity coefficients. Particularly, NRTL equation is a flexible local
composition model that can be used for the correlation of y, and for representing
complex VLE behaviors in multicomponent systems. For a binary mixture, the
activity coefficients using the NRTL model are given by

Iny — 52 721G221 n 7,G,
T (x +x,G,) (x, +x,G)?
1 221 2 1~12

2 3
Iny, = x{ 7,Gp, —+ 75,6y 2:|
(x, +x,G,)" (%, +x,G,)
being
r, = gn —8x»
RT
81— &
T @)
G, = exp(~a,;7;)

where three adjustable parameters are necessary for each binary pair: ) = g12 — 222,
6 = g»1 — g11, and the nonrandomness factor a2 = o). Parameters of the liquid-phase
model are estimated by minimizing Eq. (2). Note that the third parameter cr;, can be
treated as adjustable, but several authors have suggested that better it should be fixed
between 0.2 and 0.47. We will show that this choice is very important due to it may
cause qualitative errors in the prediction of azeotropic states.

As indicated, several studies have shown that the highly non-linear form of local
composition models makes that F,; is non-linear, potentially non-convex with
several local minima points within the specified bounds. Previous studies have
shown that parameter estimation for VLE data modeling involves the solving of a
global optimization problem [1 - 4]. In particular for NRTL model, due to its
flexibility, this model can predict more phases that actually exist in the system if the
parameter estimation procedure is not performed adequately. This qualitative
discrepancy occurs more frequently in the VLE modeling of azeotropic mixtures [4].
Therefore, it is necessary to apply a suitable numerical strategy for reliably solving
the parameter estimation in VLE modeling. In this study we have tested the
numerical performance of two stochastic optimization methods for VLE data fitting
of binary systems using NRTL equation.

Description of optimization strategies: Particle Swarm Optimization and
Simulated Annealing

We have used the Simulated Annealing (SA) and Particle Swarm Optimization
(PSO) for solving the VLE parameter estimation problem with NRTL model. Both
stochastic methods are considered global optimization strategies, and they have
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found several applications in science and engineering, including thermodynamic
calculations. Specifically, SA simulates the process of slow cooling of metals to
achieve the minimum function value in a minimization problem. The cooling
phenomenon is modeled by controlling a temperature like parameter introduced with
the concept of Boltzmann probability distribution. By a controlled temperature
reduction as the algorithm proceeds, the convergence of the algorithm can be
controlled. We have used the SA code developed by Goffe et al. [5], which is based
on the algorithm developed by Corana et al. [6]. On the other hand, PSO is a novel
and promising population based method that belongs to the class of swarm
intelligence algorithms. Kennedy and Eberhart [7] introduced this strategy for global
optimization, which is inspired by the social behavior of flocking swarms of birds
and fish schools. It exploits a population of potential solutions to identify promising
areas for optimization. In this context, the population of potential solutions is called
the swarm, and each solution is called particle. Particles are conceptual entities,
which fly through the multi-dimensional search space. The success histories of the
particles influence both their own search patterns and those of their peers. Each
particle has two state variables: its current position and its current velocity. In the
local version of PSO, which is used in this study, the search is focused on promising
regions by biasing each particle’s velocity toward both the particle’s own
remembered best position and the communicated best ever neighborhood location.
The relative weights of these two positions are scaled by the social and cognitive
parameters. Once the particles are all initialized, the positions and velocities of all
the particles are modified. After calculating the velocities and position for the next
iteration, the current iteration is completed. The best particle is only updated when a
new one is found yielding a decrease in the objective function value. This process is
performed until satisfies the stopping criterion.

Results and discussion

With illustrative purposes, we have tested the performance of SA and PSO for the
parameter estimation in binary VLE data of the system water + 1,2 ethanediol at 430
mmHg. This system has no azeotropes but its VLE parameter estimation problem is
very challenging [1,2]. Thus, the global optimum of selected example is well
identified. Equation (2) is optimized with respect three parameters of NRTL inside
following intervals: &,,6, (-2000, 5000) and o, €(0.01, 10.0). Experimental data
are taken from Dechema collection. We note that the global minimization of
objective function can be done as an unconstrained optimization problem using
NRTL equation. This VLE problem was solved 100 times using random initial
values, via different random number seed for both SA and PSO. Figure 1 shows the
plot of success rate (SR) versus the number of iterations for both SA and PSO. Note
that SR is defined as the number of runs out of 100 that satisfy the condition | f,,; —
Seate | < 10'04; where the known global optimum of the objective function is f,,, and
feate 18 the value of objective function calculated by stochastic methods. In first
instance, to directly compare the performance of algorithms, we keep constant the
numerical effort via the number of iterations, and compare the results obtained in
terms of SR. Figure 1 shows that the reliability of the stochastic methods highly
depends on the maximum number of iterations allowed. It is noticed that as the
number of iterations increased, the success rate to find the global optimum of all
methods also increased. Based on our numerical practice using PSO and SA, we can
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conclude the reliability of SA is better compared to PSO in terms of both success rate
and computational time.
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Figure 1. Success rate (SR) versus iterations of Simulated Annealing and Particle Swarm
Optimization for parameter estimation in vapor-liquid equilibrium modeling.

To illustrate the qualitative discrepancies that may occur in azeotropic predictions by
fixing parameter «;» to an unsuitable value, we have considered the parameter
estimation for VLE data of the binary mixture 2,3-dimethyl-2-butane + methanol at
atmospheric pressure [7]. Experimentally, a homogeneous azeotrope is observed for
this mixture. Data correlation was performed using NRTL model and SA method.
For parameter estimation, three scenarios were considered: a) VLE data modeling
using o, as an adjustable parameter, b) VLE data modeling using o, = 0.2 and c)
VLE data modeling using o, = 0.4. Results of parameter estimation are given in
Table 1. In this table, we also report the predicted azeotropes (homogeneous and
heterogeneous) using adjusted parameters of NRTL model. We can observe that, if
apy is fixed to 0.2 or 0.4 inside parameter estimation procedure, NRTL model
predicts simultaneously stable heterogeneous azeotropes (i.e., a vapor-liquid-liquid
equilibrium), and unstable homogeneous azeotropes. These discrepancies between
model and experiment are due to the fact that parameter o, is not used as adjustable
parameter, and, under these conditions, NRTL model predicts a liquid-liquid split
while experimentally this phase behavior does not occur. However, when three
parameters of NRTL are used as optimization variables, this local composition model
closely match the experimental data, including the presence of a homogeneous
azeotrope. These results highlight the use of a suitable strategy for parameter
estimation in VLE modeling in azeotropic systems using NRTL model.

Table 1. Results of VLE data modeling of binary system 2,3-dimethyl-2-butane + methanol
at atmospheric pressure using NRTL and Simulated Annealing

NRTL parameters Prediction of azeotropes
an o & Homogeneous  Heterogeneous
0.4447 1454 .44 1234.62 Yes No
0.4 1355.71 1156.13 Yes, Unstable Yes, Stable
0.2 1026.03 905.01 Yes, Unstable Yes, Stable
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Concluding remarks

Parameter estimation for VLE modeling using local composition models is a difficult
global optimization problem, and their characteristics pose a challenge to any
optimization technique. Our numerical experience indicates that both PSO and SA
are reliable, if properly implemented, for solving this thermodynamic problem.
However, it appears that SA is the most suitable method for parameter estimation for
VLE modeling. Finally, the improper application of NRTL model for data fitting of
azeotropic mixtures may cause severe qualitative and quantitative discrepancies in
predicting phase behavior.
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