
Available online at www.sciencedirect.com

Chemical Engineering Research and Design

journa l homepage : www.e lsev ier . com/ loca te /cherd

Process optimization using a dynamic self-
adaptive constraint handling technique coupled to
a Differential Evolution algorithm

J. Cortez-Gonzáleza, A. Hernández-Aguirreb, R. Murrieta-Dueñasa,
R. Gutiérrez-Guerrac,⁎, S. Hernándezd, J.G. Segovia-Hernándezd

a Tecnológico Nacional de México, Instituto Tecnológico Superior de Irapuato, Departamento de Ingeniería Química
y Bioquímica, Carretera Irapuato-Silao km 12.5, C.P. 36821 Irapuato, Gto, Mexico
b Centro de Investigación en Matemáticas, A.C., Departamento de Ciencias Computacionales, Callejón de Jalisco s/
n, C.P. 36240, Mineral de Valenciana, Guanajuato, Gto, Mexico
cUniversidad Tecnológica de León, Blvd. Universidad Tecnológica 225, Col San Carlos, C.P. 37670 León, Gto, Mexico
dUniversidad de Guanajuato, Campus Guanajuato, Departamento de Ingeniería Química, Noria Alta s/n, C.P.
36050 Guanajuato, Gto, Mexico

a r t i c l e i n f o

Article history:

Received 1 June 2022

Received in revised form

4 November 2022

Accepted 7 November 2022

Available online 10 November 2022

Keywords:

Optimization

Differential evolution

Self-adaptive dynamic constraint

handling

Weighting constraint handling

Chemical processes

a b s t r a c t

Nowadays, chemical processes are projected to obtain their best performance in energy and

water consumption, pollutant emissions and total annual costs, while still meeting quality of

products and good operational performance. These goals are accomplished through adequate

optimization of the fitness function by manipulating the operational variables (decision

variables) of the process. However, a successful optimization process depends completely on

the constraint handling established in themodeling of the process. The weighted summation

of constraint violations (weighting function technique, WF) is one of the most common ap-

proaches for handling constraints in optimization problems. Nevertheless, in spite of this

technique yielding good results, in this work we show a novel self-adaptive constraint

handling technique (SA) based on a self-adaptation dynamic threshold and self-adaptation

(weight) factors. This technique deals with real and discrete variables and converts equality

constraints into inequality constraints through a dynamic threshold. Both penalization

techniques (WF and SA) were, respectively, coupled to a Differential Evolution (DE) algorithm

to optimize some benchmark functions and chemical engineering optimization problems. In

addition, the rigorous model of a distillation train was optimized in Aspen One for the first

time with a self-adaptive constraint handling technique in chemical engineering. Although

both penalization techniques were coupled to the same DE algorithm and both cases were

run under the same conditions, the results show that the dynamic self-adaptive constraint

handling technique coupled to DE (DE-SA) achieves considerably better best-solutions than

the best-solutions obtained by the weighting function technique coupled to DE (DE-WF). In

addition, DE-SA led to substantial reductions of numerical effort in relation to DE-WF. These

conclusions are supported by statistical analysis of the results of 30 runs of the optimization

process for each constraint handling technique, for a distillation train.

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cherd.2022.11.006
0263-8762/© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.

]]]]]]]]]]

⁎ Corresponding author.
E-mail address:

rogutierrez@utleon.edu.mx (R. Gutiérrez-Guerra).

Chemical Engineering Research and Design 189 (2023) 98–116

http://www.sciencedirect.com/science/journal/02638762
https://www.elsevier.com/locate/cherd
https://doi.org/10.1016/j.cherd.2022.11.006
https://doi.org/10.1016/j.cherd.2022.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2022.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2022.11.006&domain=pdf
mailto:rogutierrez@utleon.edu.mx
https://doi.org/10.1016/j.cherd.2022.11.006

1. Introduction

Sustainable development demands chemical processes able
to transform raw materials into final products using optimal
amounts of energy and water, minimizing waste and redu-
cing emissions of pollutants into the environment.
These goals can be tracked by implementing robust de-

sign and optimization strategies. However, due to the com-
plex nature of the chemical processes, their mathematical
models are nonlinear, multivariable and constrained. Thus, a
key concern is the constraint handling technique used to
keep chemical processes under optimal design and opera-
tional conditions. Constraint handling is not commonly
emphasized when deterministic or evolutionary algorithms
(EA) are implemented to optimize chemical processes.
For the evolutionary algorithms the constraint handling

techniques has been classified intro five categories: methods
based on penalty functions, methods based on special re-
presentations and operators, methods based on repair algo-
rithms, methods based on separation of objectives and
constraints, and other hybrid methods (Coello, 2002). The
penalty function is the most common approach in the evo-
lutionary algorithm to handle constraints. In this method,
the constrained optimization problem is transforms into an
unconstrained optimization problem that includes pena-
lizing the infeasible points and the degree of constraints
violation (Kheawhom, 2010). The methods based on special
representations and operators, consist in reduces the di-
mension and simplifying the shape of the search space
through of a change of representation in the problem
(Dasgupta and Michalewicz, 1997). In the methods based on
repair algorithms, attempts to move infeasible solutions into
the feasible region (Riche and Haftka, 1997). Typically,
heuristic rules are used to guide the repair process. In the
other approaches separately handle objective functions and
constraints (Separation of constraints and objectives). These
approaches require several extra parameters and the con-
straints are can handled as additional objectives (Coello and
Mezura-Montes 2002). Finally, the hybrid methods normally
are coupled with a numerical optimization approach to
handle constraints in evolutionary algorithm (Adeli and
Cheng, 1994).
In fact, a weighting penalization function is the most

applied approach to handle constraints during the optimi-
zation process (which triggers some difficulties in selection
of a convenient penalty factor). The weighting penalization
function can be traced back to the first numerical algorithms
used to solve constrained optimization problems. They be-
came the de factor approach due to their broad applicability.
The penalization concept is simple to grasp: for every vio-
lated constraint, a penalty factor is applied to the optimiza-
tion function; therefore, functions that do not violate the
constraints have the best function value. The trick with this
approach is to find the weight (factor) of each penalty such
that larger penalizations should correspond to larger con-
straint violations.
Static penalties retain their weight value throughout the

optimization process. Dynamic penalties change their value
during the process. There are methods based on dynamic
penalties in which the penalty increases over generations or
that employ information from the search to adjust the pe-
nalization (Joines and Houck, 1994; Kazarlis and Petridis,
1998; Dadios and Ashraf, 2006). Other methods use a simu-
lated annealing algorithm (Michalewicz and Attia, 1994) to

adjust the weight factors. Several difficulties related to the
search for adequate penalty factors have been experienced
as they require parameters for the cooling model which is
very sensitive to the performance of the algorithm. In addi-
tion, some methods eliminate equality constraints by redu-
cing the dimension of the search space (Dasgupta and
Michalewicz, 1997) or introduce random key encoding to
maintain the feasibility of the solution (Asafuddoula et al.,
2015). Another approach attempts to move infeasible solu-
tions into feasible regions (Liepins and Vose, 1990). Un-
fortunately, this approach is problem-dependent and
computationally expensive in cases of complex optimization
problems.
On the other hand, if an infeasible solution can be easily

fixed, repair algorithms are usually a better choice as they
use non-dominance-based selection in which constraints are
handled as additional objectives (Coello and Mezura-Montes,
2002; Mezura-Montes and Coello, 2011).
Other authors have incorporated a gradient-based repair

algorithm with a dominance-based selection scheme
(Kheawhom, 2010). Repair algorithms are usually a good
choice if an infeasible solution can be easily fixed
(Boukouvala and Ierapetritou, 2014; Yu et al., 2019).
Some stochastic global optimization algorithms have

been used to solve constrained optimization problems by
means of the feasibility approach (Chanthasuwannasin et al.,
2017), or by finding a feasible point using the gradient of
constraints at an infeasible point (Takahama and Sakai,
2006). Other authors have proposed re-formulating (Zhang
and Rangaiah, 2012), hiding (Na et al., 2017) or eliminating
(Yiqing et al., 2007) equality constraints to solve non-convex
nonlinear programming (NLP)/mixed integer nonlinear pro-
gramming (MINLP) problems using evolutionary algorithms
such as Differential Evolution, Particle Swarm Optimization,
Genetic Algorithm and self-adaptive algorithms.
Several authors in chemical engineering have used static

penalty functions to solve optimization problems with in-
equality constraints, due to their effectiveness and ease of
implementation. NLP and MINLP problems have been solved
using a Differential Evolution algorithm and Tabu list
(Srinivas and Rangaiah, 2007) coupled to the penalty function
method. Improvements to the determination of penalty
parameters (weight factors) in the weight functions have also
been proposed (Sreepathi and Rangaiah, 2017). Finally, an-
other approach consists of a constraint handling method
utilizing process characteristics to formulate the weight
function (Austbø et al., 2013; Austbø and Gundersen, 2016). In
these implementations, the results show that the penalty
function method with an adequate value for the penalty
parameter provides better optimal solutions.
Other penalty approaches use several constraint handling

techniques to enhance the convergence speed and popula-
tion diversity. For engineering design problems, an im-
plementation supported by the gradient repair method and
ranking by constraint fitness has been analyzed (Zahara and
Kao, 2009). One technique involves the assignment of a
random sequence of constraints to the solution, the number
of satisfied constraints and the violation measure
(Asafuddoula et al., 2015). Another technique uses a repair
algorithm based on the gradient information derived from
the equality constraints to deal with infeasible solutions
through dominance-based selection (Kheawhom, 2010). Re-
cently, Yu et al. (2019) proposed a mechanism which trans-
forms the equality constraints into inequality constraints,

99Chemical Engineering Research and Design 189 (2023) 98–116

combined with seven criteria to compare feasible and in-
feasible solutions. Their results showed that the constraint
handling scheme is very important for identifying feasible
solutions early and reducing computational cost.
Despite the sophistication of the constraint handling

techniques reported in the literature, they have only been
applied for continuous search spaces and explicit objective
(fitness) functions (in other words, the objective function is a
simplified mathematical function of the problem). In several
research's, Aspen has been used as an evaluator of the fit-
ness function in processes with constraints, for example in-
tensified distillation systems (Vazquez–Castillo et al., 2009), a
crude distillation system (More et al., 2010), a natural gas li-
quefaction processes (Austbø and Gundersen, 2016), an ex-
tractive distillation (Franke, 2019) and recently a multiple-
interconnection process (Lyu et al., 2022). In these cases the
optimization problem is subject a set of constraints.
In this paper we present a self-adaptive constraint

handling technique coupled to a Differential Evolution algo-
rithm. This approach computes the weight factors based on
the magnitude of the violation and the number of constraints
not satisfied for each individual during the optimization
process. In other words, when the amount of violation is
large, a strong penalization is applied, and when the viola-
tion is smaller, a smaller penalization is used. Additionally,
for each individual, if the number of violated constraints is
high, the penalization factor is strong, and it is weak when
the number of violated constraints is small. In our proposal,
the dynamic threshold searches for feasible individuals and
it is only updated when the whole population accomplishes
every constraint. This dynamic threshold approach requires
the transformation of equality constraints into inequality
constraints.
We present validation of the proposed technique with five

benchmark problems and three typical chemical engineering
problems that have solutions in continuous spaces.
The benchmark problems selected are representative of

the nature of chemical engineering problems. The first pro-
blem corresponds to an NLP problem, this problem has five
variables and three equality constraints and taken from Deb
et al. (2000). The second problem is a NLP problem with four
variables, two linear inequality constraints and three non-
linear equality constraints. This problem has been previously
studied in Yiqing et al. (2007). The third problem is taken
from Diwekar et al. (1992), this MINLP problem and it con-
tains five variables, four inequality constraints and five
equality constraints and represents two reactors to minimize
the cost of producing a desired product. The fourth problem
is a non-convex MINLP problem also studied in Summanwar
et al. (2002), it has three binary and two continuous, in this
problem the two equality constraints are the sources of
nonconvexities for this example. The fifth problem con-
sidered a heat exchanger network synthesis problem re-
quiring minimization of the total cost, has formulated it as a
one variable problem with 12 constraints proposed by
Summanwar et al. (2002). The typical chemical engineering
problems selected are a heat exchanger network, a reactor
network and an absorption process. These case studies were
taken from Edgar et al. (2001). For heat exchanger network
the total annual cost was minimize and is subject to a loga-
rithmic mean temperature difference. In the reaction net-
work the objective function was minimization of the total
volume, subject to an overall conversion. Finally, in the ab-
sorption process, we optimize the flowrate of the absorber

agent subject to the absorbent compositions. Furthermore,
we present the implementation of the proposed technique
for the rigorous optimization of a distillation train through
evaluation of the objective function with Aspen One. This
problem is non convex, non-linear, multivariable subject are
equality and inequality constraints.
The paper is organized as follows. In Section 2, we in-

troduce the new algorithm coupled to a Differential Evolu-
tion algorithm and implementation of the optimization
process. In Section 3, we show the results of the benchmark
functions, the explicit chemical engineering problems and,
finally, the optimization and statistical analysis of the dis-
tillation train. In Section 4, we discuss the results and in
Section 5 we present our conclusions.

2. Optimization algorithm and constraint
handling

Constrained optimization problems are characterized by the
fact that the solution must be found inside the feasible re-
gion which is delimited by the equality and/or inequality
constraints. This means that the search for solutions favors
those individuals that better meet the constraints and that
also maximize or minimize the objective function.
Generally, a constrained nonlinear optimization problem

is expressed as follows:
Find vector

= …Z z z Z R(, ,),D
D

1

To minimize fitness function

f Z()

Subject to equality constraints

= = …h Z j n() 0 1, ,j

Subject to inequality constraints

= …g Z k m() 0 1, ,k

And subject to boundary constraints

= …z z z i D1, ,i
L

i i
U() ()

Thus, the optimization goal is to find a feasible vector Z,
composed of D dimensions, to minimize the fitness function
f Z() accomplishing the equality h Z()k and inequality con-
straints g Z()j . Evolutionary algorithms need to be coupled
to a constraint handling technique that allows them to find
feasible solutions in a constrained search space. The chosen
technique plays an important role in the quality of the so-
lutions delivered and its computation time.
Techniques that favor the feasible solutions are named

overpenalized and may lead to a fast convergence to a fea-
sible solution but it may be suboptimal. Premature con-
vergence means that the search space is not adequately
explored during the initial optimization process (Ben, 2016).
On the other hand, techniques that favor the infeasible so-
lutions are named underpenalized and can lead to a slow
convergence to the feasible zone or even no feasible solution
at all.
A weighting function WF() technique is the more usual

way to handle constraints in chemical engineering.
Nonetheless, finding the correct weights is an issue which we
propose to overcome via self-adaptation. In this technique,
f Z() is the fitness function penalized by the weighted sum of

100 Chemical Engineering Research and Design 189 (2023) 98–116

constraint violations, wj are the factors that we need to find
and f Z() is the new optimization function.

= +
=

f Z f Z w G Z´() () max(0,)
j

m

j j
1

In this case, for the WF technique to handle the con-
straints we used two sets of penalties (Leboreiro and
Acevedo, 2004). A major penalty was applied when the in-
dividual was infeasible in evaluator (non-convergence eva-
luator), while a successful simulation was just slightly
penalized. One is used to penalize infeasible individuals
(=w 10001) and the other penalizes each time the constraints
are not met (=w 1002). Otherwise, in both cases the weight
factor value is 0. According to the experiments realized, these
values perform well for most problems.
Larger or smaller values ofwj lead to the overpenalization

or underpenalization described. In chemical engineering,
some authors have proposed constraint handling techniques
based on the WF approach that can be applied to problems in
continuous spaces (Teh and Rangaiah, 2003; Babu and
Angira, 2006; Kheawhom, 2010; Zhang and Rangaiah, 2012).
For this reason, it is necessary to design a constraint hand-
ling technique capable of coupling with evolutionary algo-
rithms to optimize complex problems with mixed variables
and highly nonlinear models.

2.1. Self-adaptive constraint handling technique

Generally, the optimization of chemical engineering pro-
blems uses design constraints in discrete and continuous
search spaces are multivariable and multimodal; in addition,
the objective function is highly nonlinear and non-convex
subject to nonlinear equality and inequality constraints.
Therefore, robust constraint handling techniques, which
consider the information of non-feasible and feasible in-
dividuals to favor the optimization process, are required.
Next, we present a constraint handling technique that can

be coupled to evolutionary algorithms, in this case
Differential Evolution (DE). This approach includes four dif-
ferent penalization criteria and transforms equality con-
straints into inequality constraints through a dynamic
threshold involving self-adaptive factors. Fig. 1 shows the
general self-adaptive (SA) penalization approach.

A. Infeasible individuals

In the first step, individuals are tested for feasibility and
the death penalty applied for non-convergence in the eva-
luator (=viola 1convergence). This penalty in only applied to non-
feasible individuals, and the worst value (f max) is assigned to
the fitness function (f fitness) and a poor value (s) is assigned at
all equality constraints (hj). Otherwise, the individual is

evaluated to obtain f total and the constraint values (h z()j
reached).

This step is shown in lines 2–14 in Fig. 1.

B. Self-adaptive dynamic threshold

In the second step, the main objective is to search areas of
the feasible region through relaxing and stiffening of the
constraints, to determine the directions of movement
through the dynamic threshold .
In other approaches, this uses as level comparison be-

tween the aptitudes of the parent and the child (Takahama
and Sakai, 2010). In this proposal is used to relax-stiff

constraints and is progressively reduced throughout the op-
timization process, additionally transforms equality con-
straints into inequality constraints, as shown below:

=h z h z() () 0j
target

j
reached

is treated as:

>h z h z| () ()|j
target

j
reached

Where: hj
target is the set point of the constraint (target value)

and h z()j
reached is the value of the constraint reached, for each

individual. In our approach, the constraint is considered as
accomplished when h z h z| () ()|j

target
j
reached is within the in-

terval (;) and =viola 0j . The threshold reduces when the
whole population accomplishes all constraints, =viola 0total ,

=f 0constraints and =f fpen total.
The progressive reduction of epsilon is defined by the

following equation:

= c*update

Where: is the current value of the dynamic threshold, c is
the progressive reduction factor and update is the new value of
the dynamic threshold. The factor c is adjusted between 0.5
and 0.9. For each problem, this value must be empirically
adjusted. According to the experiments realized, a value of
0.8 performs well for most problems. In this implementation,
the initial value of is 0.5.
An important aspect considered is when >viola 0total ; in this

case, we calculated the self-adaptation of penalty factors that
depend on the degree of deviation of the constraint between
the reached value (h z()j

reached) and the target value (h z()j
target).

For each individual, the penalty factors for each constraint are
calculated according to the following expression:

=w b h z h z*(() ())j
constraints

j
target

j
reached 2

Notice that the penalty factor is computed using the re-
sidual value (h z h z() ()j

target
j
reached) raised to the power 2 mul-

tiplied by coefficient b, for each equality constraint,wj
constraints.

The power 2, guarantees positive values and multiplying by b
enables the handling of similar orders of magnitude in order
to establish significance in the penalty method. When the
residuals are large, a strong penalization is applied. For a
small violation, the penalization is weak (see Fig. 1, lines
15–28). This step allows the best fitness function routes to be
powered and no promissory search zones to be segregated by
the algorithm.

C. Self-adaptive penalties

In addition to the magnitude of the violation, our tech-
nique also involves counting the number of unmet con-
straints, violatotal, and computes f num_pen. The penalization is
carried out as a function of the number of constraint viola-
tions, violatotal; the fitness function is penalized by a factor
proportional to the amount the constraint is violated,
wnum_pen. For each individual, if the number of violations is
small the penalization is weak, and it is strong when the
number of violations is high (see Fig. 1, lines 29–36).
Static penalties and self-adaptive penalties are applied in

our proposal (Homaifar et al., 1994; Coello, 1999). In this kind
of penalization, the user defines several levels of violation
and penalty coefficients (penalty factors) for each constraint.
Thus, the penalty coefficient increases as higher levels of
constraint violations are experienced.

101Chemical Engineering Research and Design 189 (2023) 98–116

These penalties are represented by integer factors, in-
itialized to 0 and incremented by 1 for each constraint of
the problem that is violated, regardless of the amount of
violation. Notice that only the number of constraints vio-
lated is considered in the variable violatotal, but not the
magnitude by which each constraint is violated. Through
this combination of penalties, the evolutionary algorithm
has enough information about how several constraints are
violated, but also about the amount of constraints un-
accomplished.

D. Constraint on design variables

In several problems, there are design variables that are
bounded by a maximum value mmax, usually defined heur-
istically. This value is not a constraint but will be considered
as an important part of the nature of the problem. We apply
this type of penalty to guide the search towards solutions
that find the appropriate values of this design variable, zi

select.
This kind of penalization is applied depending on the

nature of the optimization problem. For instance, if mini-
mization of the fitness function is pursued, the penalty

Fig. 1 – General self-adaptive penalization scheme.

102 Chemical Engineering Research and Design 189 (2023) 98–116

method decreases the final fitness function value only if all
restrictions lie within the dynamic threshold, ε. The fitness
function using the penalty is f num_pen. So, the reduction of the

fitness function depends on the relationship between zi
select

and mmax. This favors intensification of the promising area,
since this relationship is only between 0 and 1. In the last
step, the evolutionary algorithm returns f fitness (see Fig. 1,
lines 37–50). When any restriction is not met, this stage does
not apply and =f ffitness num_pen.
This technique allows to establish superiority over fea-

sible points and to partially order them in order to guide the
search towards individuals that decrease the objective
function and that also implicitly minimize some of the di-
mensions (design variables) of the individual. To explain the
implementation of this technique we will use as an example
the case study of the distillation train. It is important to
mention that in the optimization of distillation columns we
know that a decrease in the thermal load, increases the
number of stages of the column, which is why some authors
have proposed to perform a multi-objective optimization
with stochastic algorithms (Vázquez-Ojeda et al., 2013;
Gómez - Castro et al., 2015; Medina - Herrera et al., 2017;
Palma - Barrera et al., 2019; Contreras - Zarazúa et al., 2021).
Our implementation allows using a uniobjective algo-

rithm, where the constraints can be additional objectives in
the optimization process and it is possible to find zones that
meet the decrease of both the heat duty and the number of
total stages of the separation system.
In the case study of the distillation train, we assign as

"constraint on desing variable" the total number of NT stages
of each individual. NT is the sum of the number of stages of
all the columns involved in the separation scheme. For this
last stage, it is necessary to set a heuristic maximum value
related to the feasibility of construction of the distillation
column (mmax). The value of mmax is used in two stages, in
the first one to compare it with NT and in the second one to
calculate the penalty factor wz. In the comparison between
mmax with NT, when the value of NT is less than that ofmmax

then the fitness function should be penalized. The penalty
factor is determined from the quotient between NT andmmax,
and a value less than 1 is obtained. Therefore, when the fit-
ness function is penalized, the numerical value will be fur-
ther decreased. In a minimization problem, the individuals
that have the highest probability of being chosen are those
with a lower value of fitness function. So, implicitly, with this
strategy the selection pressure increases for those in-
dividuals that minimize the objective function and also im-
plicitly decrease the number of total stages of the distillation
train. Thus, we define a superiority of feasible points, i.e.,
when the child faces the parent, the one with the lowest
fitness function value and therefore the lowest number of
total stages in the separation system will be chosen. This
strategy intensifies the search for the feasible region where
the objective function is minimized and also reduces the
number of design stages of the separation scheme. Our
proposal can include more than one design variable in the
constraints. This allows to include some additional objective
as a constraint in a uniobjective algorithm. Recently, we have
implemented this technique to decrease the pressure and
the number of total stages in oscillating pressure distillation
systems, obtaining quite favorable results.
It is important to mention that in this penalty technique

none of the design variables (dimensions) of the individual is

altered, the only thing that is favored is the intensification in
feasible regions that minimize the thermal load and also the
total number of stages.
In the area of evolutionary computation, when devel-

oping constrained optimization algorithms it is necessary
to design a constraint handling technique that allows the
algorithm, during the optimization process, to find the
feasible zone. In this sense, the techniques that have been
recently developed consider sophisticated elements such
as the implementation of as a repair algorithm based on
the gradient information as rank-based selective pressure
strategy (Fister et al., 2021) or basic concepts such as
weight function. However, an important point of discus-
sion in the area of evolutionary computation is the de-
termination of additional parameters corresponding to the
constraint handling technique. Traditionally, the tuning of
these parameters depends on the nature of the optimiza-
tion problems to be solved. That is, the technique is
adapted to the characteristics of the problem, which limits
its generalization, as expressed by Fister et al. (2021), this is
because the algorithms are adapted to the type of functions
to be optimized.
In particular, our technique uses 3 user-defined para-

meters: b, ε and c. These parameters depend on the nature of
the problem to be solved.

• Parameter b is assigned a constant value during the whole
optimization process, which guarantees that the order of
magnitude of fconstraints is equal to that of ffitness. This

parameter allows the penalty to be significant according to
the degree of constraint violation. That is, if it violates a
lot, it penalizes strongly, otherwise it penalizes softly.

• The parameter ε defined as dynamic threshold is depen-
dent on the nature of the problem. The function of this
parameter is to relaxed the constraints at the beginning of
the optimization process, since it will accept as feasible
individuals those that at that moment comply with the
relaxed constraint. However, during the optimization
process, the value of ε is updated, turning the constraints
rigid, leading the search towards feasible zones.

• The parameter c is a constant value throughout the opti-
mization process and corresponds to a progressive re-
duction factor of ε. Values of this parameter are between 0
and 1. Values very close to 1 cause epsilon to reduce
slowly. Values close to 0 increase the rate of epsilon re-
duction. This parameter helps to control the selection
pressure, avoiding premature convergence.

The weighting factors between ftotal and fconstraints, which do
not require initial values, are calculated from the parameters
b and These parameters must be modified depending on the
nature of the problem. According to our experience these
proposed values obtain optimized values in more complex
configurations, and it is not necessary to modify them.
However, it is necessary to perform the tuning of the para-
meters of the proposed technique along with the chosen
optimization algorithm.
It should be noted that the technique has no dependence

on the optimization algorithm, so it can be coupled to any
algorithm of the user-define considering the tuning of the
parameters of both the optimization algorithm and the
constraint handling technique.

103Chemical Engineering Research and Design 189 (2023) 98–116

2.2. Differential evolution algorithm

The classic DE algorithm consists of four stages: initializa-
tion, mutation, crossover and selection (Storn and Price,
1997). As can be seen in Fig. 2, once the initial population is
generated, the optimization loop is performed. Notice that
the mutation, crossover and selection stages are carried out
to generate the new individuals of each generation. Here-
after, these stages are performed continuously until the
specified stopping criterion is satisfied. In this case, the
number of function evaluations is established as the stop-
ping criterion. This criterion is the most commonly used in
evolutionary algorithm literature (Zielinski and Laur, 2008).
In this case, we selected the number of iterations as stopping
criteria, however, it is possible to implement a stop criterion

for elitism, if after “n” number of generations the fitness
function of elite individual remains constant. Other case is if
the epsilon value decreases by more than 10–3 of all or part of
the total population. Finally when some parameter of the
evolutionary algorithm.
In DE, the initial population of individuals is randomly

generated within the boundary constraint of each design
variable (search space). Each individual i contains char-
acteristic decision variables D and is called a decision vector
Zi G, . All individuals Npob in each generation G are selected as
parents and each of them is processed as described below: in
general, in the mutation process, three individuals are ran-
domly chosen as parents (Z Z Z, ,r G r G r G1, 2, 3,), except the parent
in the processing (Zi G,).

Fig. 2 – Flowsheet of Differential Evolution algorithm.

104 Chemical Engineering Research and Design 189 (2023) 98–116

The base vector, Zr G3, , is the first individual and the re-
maining two are used to obtain the residual Z Z()r G r G1, 2, that
is then scaled by the scale factor F and added to the base
vector; this means that the resulting vector is recombined
with the parent. The recombination probability is controlled
by the crossover factor CR. The result of the crossover pro-
cess produces a trial vector, vi G, . Finally, in the survivor se-
lection operator, the trial vector is accepted in the generation

+G 1 if the trial vector is better than the parent (see Fig. 2).
The mutation process is performed based on the dis-

tribution of the solutions in the current population. In this
way, search directions and possible step sizes depend on the
location of the individuals selected to calculate the mutation
values. TheCR parameter controls the influence of the parent
in the generation of the offspring. Higher values mean less
influence of the parent. The F parameter scales the influence
of the set of pairs of solutions selected to calculate the mu-
tation value. The mutation and crossover steps together with
the selection step constitute one generation or iteration of
the DE algorithm. The procedure is repeated until the spe-
cified stopping criterion is satisfied.

2.3. Constrained optimization procedure

In the constrained optimization process, the DE algorithm
was coupled to our self-adaptive constraint handling tech-
nique (DE-SA) and weighting penalty function (DE-WF), for
comparison of results. In this optimization process, the DE
algorithm requires the individuals to be physically feasible in
all generations. An individual being physically feasible im-
plies that it satisfies the problem and that it is possible to
calculate the objective function through an evaluator.
For the first generation, in this work the population was

randomly generated as follows:

=

+

< >

= +

=

+
+ +

+ +

+ +

z

z random z z

if z z or z z

z z z z

z z z z

[0, 1] ()

| |

| |

i l G

l
L

j l
U

l
L

i l G l
L

i l G l
U

i l G l
L

i l G l
L

i l G l
U

i l G l
U

, , 1

() () ()

, , 1
()

, , 1
()

, , 1
()

, , 1
()

, , 1
()

, , 1
()

where:

= … = …i N l D1, , 1, ,pob

Through this approach, the set of variables that comprises
each individual, i, is kept within the boundaries established.
In this case, N represents the size of the population for each

generation and zl
L() and zl

U() represent the lower and upper
limits of the variables or dimensions of problem, respec-
tively. This allows to replace the individuals with variables
out boundaries for individuals that if accomplishing them.
Explicit and implicit fitness function problems are treated

here. Explicit fitness functions are benchmark functions and
typical chemical engineering problems. The distillation train
case is an implicit fitness function. The constrained optimi-
zation procedure is different in each case, as described
below:

• The constrained optimization process for the case of the
benchmark functions selected for CEC 2006 and chemical
engineering functions was implemented in MATLAB. The
DE algorithm generates the population Npob in each gen-
eration G and this is evaluated to obtain the objective

function, f total. The evaluated individuals are analyzed
according to the constraints violated, for each constraint
handling technique. This information is added to the pe-
nalized fitness function f fitness which is used by the algo-
rithm to generate the new population +G 1. This process
is repeated until the stopping criterion is reached.

• The distillation train optimization process requires the
implementation of an interface between MATLAB, Excel
and Aspen One©. The DE algorithm is coded in MATLAB,
the SA constraint handling technique in Excel and the
fitness function evaluator in Aspen One©. The process
optimization consists of the DE algorithm generating the
population, Npob, for each generation, G. Each individual,
Zi G, , is sent to Aspen One to simulate the distillation train
to obtain the objective function, f total, and the purities and
recoveries for each component xi

pur and xi
rec. This in-

formation is used to determine the fitness function pe-
nalization f fitness. The fitness function value is returned to
MATLAB to generate the new population, +G 1. This pro-
cess is repeated until the stop criterion is met. A detailed
description of the implementation of the SA constraint
handling technique for the distillation train is in Appendix
A. Notice that the constraints are not treated within the
Aspen simulator, but in Excel where the implementation
of the constraint handling technique was performed. In
this case, our optimization proposal is based on the eva-
luation of the objective function through a sequential
modular simulator Aspen Plus, so the optimization com-
puting time considers three stages: the evaluation of the
objective function (Aspen Plus), the evaluation of the
constraint handling technique (Excel) and the optimiza-
tion process of the DE algorithm (MatLab). Of these three,
the most time-consuming stage is the one performed by
Aspen Plus due to the time required to achieve con-
vergence of the simulation and obtain the value of the
objective function, as stated by Kiss et al. (2012). In our
case optimization computing time corresponds to the
evaluation time of each individual and is 4 s

3. Case studies and results

This work presents an SA technique based on a dynamic
threshold and self-adaptation. This constraint handling
technique has been coupled to a DE algorithm (DE-SA). We
compared the performance of the SA technique with results
obtained by weight function penalization (DE-WF) for the
same problems. The DE algorithm is coupled to the two
techniques. Thus, the performance of DE-SA versus DE-WF is
particularly influenced by the penalization technique instead
of the DE algorithm. The values of the parameters for the DE
algorithm were: =CR 0.8 and =F 0.85. These are typical va-
lues used in the literature (Wong and Dong, 2005). The DE-SA
and DE-WF algorithms were run 30 times for each problem.
In the distillation train case, we performed a statistical
comparison of the results.
We optimized five benchmark functions with constrained

in continuous space, proposed in CEC 2006 and solved by
Kheawhom (2010), to validate our SA technique. In addition,
we analyzed three explicit chemical engineering problems
proposed by Edgar et al. (2001). These case studies represent
complex optimization problems, from constrained NLP to
constrained non-convex MINLP.

105Chemical Engineering Research and Design 189 (2023) 98–116

Finally, the SA technique was implemented in a more
complex search space. This technique was implemented to
optimize a multicomponent distillation scheme based on
MESH equations. This mathematical model is highly non-
linear, non-convex and multimodal, with continuous and
discrete variables subject to equality and inequality con-
straints. In this problem, the fitness functions were eval-
uated in Aspen One using a computer with the following
characteristics Core i7 processor, 2.5MGz and 8 GB RAM.

3.1. Optimization of benchmark functions

In this case, the five benchmark functions shown in Table 1
were optimized. These benchmark functions have been
widely used as optimization tests (Kheawhom, 2010). The
first benchmark represents an NLP problem. The second
benchmark is the modeling of an NLP problem with four
variables, two linear inequality constraints and three non-
linear equalities. The third benchmark is an MINLP problem.
The fourth benchmark represents a non-convex MINLP

Table 1 – Benchmark functions for constraint optimization.

106 Chemical Engineering Research and Design 189 (2023) 98–116

problem, while the fifth case is formulated as an MINLP
problem that contains three integer variables and five con-
tinuous variables and several equality and inequality con-
straints. In this case, 20,000 function evaluations and 100
individuals per generation were used in the optimization
process. These problems are representative of the nature of
some chemical engineering problems.

3.1.1. Results
Table 2 shows the optimization results for the five bench-
mark functions. The optimization based on dynamic self-
adaptive constraint handling (DE-SA) obtained the same
optimal values of f fitness reported in the literature
(Kheawhom, 2010) for all cases evaluated. The values de-
termined with the weight function penalization technique
(DE-WF) are larger than the values reported, particularly in
the last two problems that correspond to MINLP problems.
SA and WF use the same stop criterion as Kheawhom (2010)
to validate the results.
Kheawhom (2010) performed optimization of the bench-

mark functions using a DE algorithm coupled with a repair
algorithm for constraint handling. Comparing the results
obtained using DE-SA, DE-WF and those obtained by
Kheawhom (2010), a large difference in the number of func-
tion evaluations used to optimize the benchmark functions
was observed. In fact, the optimization performed by DE-SA
required 20,000 function evaluations, which corresponds to
using a population of 100 individuals and 200 generations.
Comparatively, the optimization performed by Kheawhom
(2010) required 2,000,000 function evaluations, which results
from a population of 1000 individuals and 2000 generations.
On the other hand, the optimal value of the fitness func-

tion was obtained in generation 35 in the case of DE-SA
whereas the optimal value obtained by Kheawhom (2010)
was determined in generation 120. Therefore, a considerable
reduction of numerical effort and computing time was re-
quired by DE-SA. This demonstrates the robustness and ef-
ficiency of the constraint handling technique to deal with
problems with different levels of complexity, from NLP pro-
blems to highly nonlinear and multivariable optimization
problems with strong interactions between the variables,
such as non-convex MINLP with inequality and equality
constraints.

3.2. Optimization of typical chemical engineering
problems

The following case studies were optimized: a heat exchanger
network, a reaction network and an absorption process.

These case studies were taken from Edgar et al. (2001) and
formulated as minimization problems. Minimization of the
total annual cost was established as the fitness function in
the heat exchanger network optimization problem, subject to
a logarithmic mean temperature difference (LMTD). The fit-
ness function for the reaction network optimization problem
was minimization of the total volume (VT), subject to an
overall conversion of 0.9 for XA3. The flowrate minimization
of the absorber agent (solvent) was defined as the fitness
function of the absorption process optimization problem
subject to the absorbent compositions y1 and y2 being within
the range of y0 to y3.
These case studies are composed of continuous search

spaces and nonlinear fitness functions. In addition, these op-
timization problems are subject to equality and inequality
constraints. Likewise, both case study 2 and case study 3 have
an important dependence between the optimization variables
due to reaction rates and equilibrium ratios, respectively. The
formulation of the optimization problems is shown in Table 3.
In this optimization, a population of 60 individuals per gen-
eration and 3000 function evaluations were used.

3.2.1. Results
Fig. 3 shows the optimization results for both cases, DE-SA
(blue line) and DE-WF (red line), and they are compared with
the optimal value determined by Edgar et al. (2001) using a
deterministic method (green line).
According to the behavior depicted in Fig. 3, it was observed

that DE-SA found the optimal solution in around 650 function
evaluations, while DE-WF obtained the optimal value in about
1800 function evaluations. Thus, it is evident that this perfor-
mance of DE-SA significantly reduces the computational effort
by more than 60%. In fact, DE-SA obtains the best solution in
between 1 and 3min, while obtaining the optimal value with
DE-WF takes between 3 and 5min. So, at least 50% reductions
of computation times are obtained.
Table 4 shows the optimization results determined using

DE-SA and DE-WF and the corresponding results reported by
Edgar et al. (2001). According to the results for the three case
studies, the solutions obtained using the SA technique were
very similar to the optimal values reported previously by
Edgar et al. (2001), while those obtained using the WF tech-
nique experienced a larger deviation in the optimal value
and greater computing effort was required.
The statistical analysis showed that the SA algorithm is

robust and efficient since the same optimal value was de-
termined in the 30 runs achieved. So, it is evident that the SA
technique is a worthy tool since it is able to deal with opti-
mization problems subject to equality and inequality con-
straints and interdependence on the optimization variables,
as the separation schemes.

3.3. Distillation train

In this case study, a distillation process (Fig. 4) is used to split
a mixture made of four lineal aliphatic hydrocarbons: n-bu-
tane, n-pentane, n-hexane and n-octane. A flow rate of 45.36
kmol/h is introduced in the first column as a saturated liquid.
The feed composition is as follows: 0.45 for intermediate
components and 0.05 for the other components. The design
specifications for the purity and recovery for each compo-
nent were established as 0.987 for A, 0.98 for intermediate
components and 0.986 for the last component. The design
pressure for the separation was chosen to ensure using

Table 2 – Optimization results.

Test Function
type

Fitness function f()fitness

Kheawhom
(2010)

Weighting
function
(DE-WF)

Self-adaptive
(DE-SA)

1 NLP 0.0539498 0.0646498 0.0539498
2 NLP 5126.5 5127.42 5126.5
3 MINLP 99.245209 99.5209 99.245209
4 Non-

convex
MINLP

7.66718 7.928 7.66718

5 MINLP − 1.923098 − 1.9897 − 1.923098

107Chemical Engineering Research and Design 189 (2023) 98–116

cooling water in the condensers. The phase equilibrium for
the liquid phase was determined using the Chao–Seader
model, since the system is a hydrocarbon mixture to be se-
parated at low or medium pressure (Aspen Plus 13.0, 2007).
The optimization problem is the following:
Find vector

= N N N N N N RR RR RRZ (, , , , , , , ,)T F T F T FB B B B B B B B B, 1 , 1 , 2 , 2 , 3 , 3 1 2 3

To minimize fitness function

=Q f Z()

Subject to constraint function

= = …h Z x j M() 1, ,j target
pur

constraints1,

= = …h Z x j M() 1, ,j target
rec

constraints2,

And subject to boundary constraints

= …z z z i D1, ,i
L

i i
U() ()

= …N N l B2 1, ,F Bl T Bl columns, ,

N N N,S S F1 2

=x xi
pur pur

0

=x xi
rec rec

0

Table 3 – Typical chemical engineering case studies.

108 Chemical Engineering Research and Design 189 (2023) 98–116

where: NT is the total number of stages, NF is the feed stage
and RR is the reflux ratio. NT and NF represent discrete vari-
ables, while RR represents a continuous variable.
Consequently, there are nine dimensions, which represent
six discrete variables and three continuous variables.
Minimization of the total heat duty (Q) in the reboiler is

the fitness function of the problem. Notice that Q is a func-
tion of the vector Z. The design specification for purity (purity
constraint) is defined as xtarget

pur and that for recovery (recovery
constraint) is given by xtarget

rec . As before, in order to conduct a
comparative analysis, optimization of the problem was per-
formed using DE-SA and DE-WF, respectively. In this case, a
population of 100 individuals and 200 generations were used.
The CPU time of the optimization process corresponds to the
total time required to evaluate 20,000 individuals and is ap-
proximately 22 h. A high percentage of the time corresponds
to the long convergence time required by the Aspen Plus si-
mulator that ensures rigorous process simulation results
(Vázquez-Ojeda et al., 2013).

3.3.1. Results
As shown in Fig. 5a), the results indicate that DE-WF has
some difficulty in exploring effectively and determining op-
timal values in the feasible search zone. This behavior is
produced due to the weight function penalization of feasible
individuals (designs) having a similar order of magnitude as
infeasible individuals. In other words, the weight penaliza-
tions were not enough to improve the optimization process.
The wide dispersion of the results reflects this.

Besides that, it was determined that most individuals
concentrate between 20 and 40 GW/y whereas the best fit-
ness function values represent a heat duty of 20 GW/y.
However, in spite of lots of individuals lying around this
optimum value, most of them do not meet all constraints.
The results generated in the optimization using DE-SA are

shown in Fig. 5b). In this case, it is evident that from the first
generations (300 function evaluations) that the DE-SA algo-
rithm obtains feasible solutions for a value of the threshold.
These initial solutions were feasible as the threshold is re-
latively large initially. Nevertheless, notice that from about
300–6500 function evaluations, the penalty function is larger
due to the threshold value (ε) reducing as optimization pro-
gresses. This means that the population must have larger
purities and recoveries than the first individuals, which in-
creases energy consumption. Also observe that as the
threshold reduces, the DE-SA algorithm has difficulty in, first,
finding a feasible zone and, second, achieving stabilization in
the feasible zone, increasing the fitness function.
Nonetheless, notice that after 6500 function evaluations,

the DE algorithmwas capable of identifying and remaining in
a feasible zone. Thus, the robustness of the algorithm led to
the generation of feasible solutions that meet purity and
recovery targets with a set of design variables that allow
minimization of the total heat duty (fitness function). This
behavior was determined in an experience of 30 experi-
ments (runs).
On the other hand, Table 5 shows the best five solutions,

from 20,000 total function evaluations, obtained by DE-WF.
Notice that the best solution has a fitness function of
21.5846 GW/y and the worst individual has a fitness function
of 32.6248 GW/y. In addition, the results in Table 5 evidence
that all constraints are accomplished, but all purities and
recoveries are above the target value. Therefore, in terms of
design, high values of purity and recovery mean high energy
consumption, which save concordance with the fitness
function values.Table 6.

3.3.2. Comparative analysis
Based on the previous analysis, it is clear that the dynamic
self-adaptive constraint handling presented in this paper
improves the performance of the DE algorithm through a
more intensive exploration of the search space. It led to
better solutions, less numerical effort and a shorter compu-
tation time than the other constraint handling technique.
These results are a consequence of the dynamic behavior of
the threshold during the optimization process. It is

Table 4 – Objective function results for typical chemical engineering cases.

Test Objective function Edgar et al. (2001) Our technique

Weighting function
(DE-WF)

Self-adaptive
(DE-SA)

1
= +

+

()CAT

w cp T T

min

(())

na

w cp T S T E
U TML

w cp T S T E
U TML

lvap
F S

350 1 1(1 1)

* ,1

2 2 (2 2)

* ,2

0.65

0.005 * 8500
1 1 1 1

2428.022 2428.025 2428.019

2 = +

+

L
min

T
Go yo y

x

Go y y

x

Go y y

x

(1)

1

(1 2)

2

(2 3)

3

55.154 56.789 55.154

3 = +Vmin T
QCAF XA XA

rA

QCAF XA XA
rA

(1 2)

1

(2 3)

2

814.648 815.742 814.646

Fig. 3 – General performance of the optimization process in
a typical chemical engineering case.

109Chemical Engineering Research and Design 189 (2023) 98–116

important to point out that the degree of relaxation and re-
duction of the threshold was determined using information
of feasible and non-feasible individuals.
On the other hand, taking into account that the major

compromise in a distillation column is given by the total heat
duty and total number of stages, it is important to point out
that the designs found by DE-SA are better for both NT and Q
than those determined by DE-WF. In fact, the best design
obtained with DE-SA requires 56% less energy (9.4257 GW/y
vs 21.5846 GW/y) and 26% fewer stages (82 stages vs 111
stages) than the best design determined by DE-WF. Hence,
the best solution obtained by DE-SA provides the best com-
promise between energy consumption and total number of
stages for this distillation train.
In addition, in order to conduct a more rigorous statistical

analysis, DE-SA and DE-WF results were compared using a
nonparametric statistical hypothesis test called the boot-
strap signed-rank test (Hesterberg, 2011). This test is used
when the average of the optimal fitness values can be

assumed to be normally distributed. The null hypothesis in
the bootstrap signed-rank test is that no significant differ-
ence exists between the performance of DE-SA and that of
DE-WF. The alternative hypothesis is that there is a sig-
nificant difference in the performance of DE-SA compared to
its competitor. In the following expressions, H0 represents
the null hypothesis and H1 is the alternative hypothesis.

µ µ=H : DE SA DE WF0

µ µH : DE SA DE WF1

where: µDE SA and µDE WF represent the average of the fitness
function values for DE-SA and DE-WF, respectively. The
bootstrap signed-rank test works by comparing two para-
meters, called α and p-value. α is defined as significance level
and it is considered as the reference parameter in this ap-
proach. In the literature, a standard value of 5% (0.05) is as-
signed for α. Hence, the null hypothesis is rejected if the p-
value is less than the significance level. Outcomes obtained

Fig. 4 – Distillation train.

Fig. 5 – Optimization of distillation train, DE-WF vs DE-SA.

110 Chemical Engineering Research and Design 189 (2023) 98–116

through the bootstrap signed-rank test at α = 0.05 confirm
that the performance of DE-SA is better than that of DE-WF.
This statement is also supported by the results obtained by
applying other statistical tests such as the median and var-
iance.
On the other hand, with the aim to support earlier results,

a confidence interval was determined. This interval was

obtained through a resampling with replacement of the best
fitness function values. These fitness function values were
determined by carrying out 30 experiments (runs) for each
algorithm (30 runs for DE-SA and 30 runs for DE-WF). In this
case, a resampling rate of 80% was applied. Thus, from 30
total individuals, 24 individuals were randomly chosen and
the mean was computed. The resampling was performed

Table 5 – Best five designs found by DE-WF.

Design 1 2 3 4 5

Total heat
duty,

Q GW y(/)

21.5846 26.8670 30.4748 31.9111 32.62484

Column 1, B1
NT 49 41 44 27 50

NF 33 21 18 19 31

RR 15.9506 14.2624 19.6461 20 20

Column 1, B2
NT 23 28 44 28 31
NF 11 16 25 18 16

RR 8.6047 20 15.6566 10.7606 8.4996

Column 1, B3
NT 39 42 25 25 50
NF 8 22 7 14 49
RR 7.5152 1.9634 8.1922 13.6602 16.2600

Purity

xA
pur 1.0000 0.9999 0.9999 0.9999 1.0000

xB
pur 0.9920 0.9920 0.9920 0.9920 0.9920

xC
pur 0.9921 0.9921 0.9843 0.9921 0.9891

xD
pur 1 0.9999 0.9798 0.9999 0.9703

Recovery

xA
rec 1.0000 0.9999 0.9999 0.9999 1.0000

xB
rec 0.9920 0.9920 0.9920 0.9920 0.9920

xC
rec 0.9921 0.9921 0.9843 0.9921 0.9891

xD
rec 1 0.9999 0.9798 0.9999 0.9703

Table 6 – Best five designs found by DE-SA.

Total heat
duty,

Q GW y(/)

9.4257 10.4795 10.9875 11.5112 12.0309

Column 1, B1
NT 18 41 32 44 42

NF 11 12 11 14 25

RR 20 14.4178 16.9542 16.8805 17.4485

Column 1, B2
NT 34 47 38 27 36
NF 21 27 5 17 12

RR 3.9457 4.6335 5.1058 3.2294 5.0529

Column 1, B3
NT 30 35 38 15 21
NF 19 28 12 7 5
RR 1.4821 2.1354 1.9390 3.9878 2.7984

Purity

xA
pur 0.9905 0.9990 0.9992 1.0000 1.0000

xB
pur 0.9910 0.9920 0.9837 0.9909 0.9921

xC
pur 0.9920 0.9916 0.9839 0.9904 0.9922

xD
pur 0.9993 0.9946 1.0000 0.9943 0.9999

Recovery

xA
rec 0.9905 0.9990 0.9992 1.0000 1.0000

xB
rec 0.9910 0.9920 0.9837 0.9909 0.9921

xC
rec 0.9920 0.9916 0.9839 0.9904 0.9922

xD
rec 0.9993 0.9946 1.0000 0.9943 0.9999

111Chemical Engineering Research and Design 189 (2023) 98–116

50,000 times, obtaining the histogram shown in Fig. 6a)
and b).
The results obtained by DE-SA showed that in about 95%

of essays (runs) the fitness function values of the best in-
dividuals lie between 10.3422 and 15.6312 GW/y, with an
average value of 12.8605 GW/y and amedian of 12.8450 GW/y.
Meanwhile, the range of the fitness function values for the
best individuals determined using DE-WF varies between
23.9886 and 41.6991 GW/y, the average being 31.1890 GW/y
and the median 31.1071 GW/y. These intervals are re-
presented through the red bars shown in Fig. 6a) and b),
where a normal distribution is evidenced. Through the be-
havior shown, it is clear than the optimization performance
of DE-SA is better than that of DE-WF. In fact, the designs
obtained using DE-SA show heat duty reductions of more
than 50% compared with the best heat duty designs obtained
by DE-WF.
On the other hand, with the aim to provide an alternative

visualization of the results, a comparative analysis of DE-SA
and DE-WF was carried out through the box diagram de-
picted in Fig. 6c). In this scheme it can be observed that the
median for the DE-SA algorithm, 12.84 GW/y, is less than that
for DE-WF, 23.9886 GW/y. Also notice that there is little dis-

persion in the experiments achieved using DE-SA in relation
to the experiments carried out using DE-WF. This can be
observed through the size of the box with respect to the y
axis. In addition, observe that the DE-SA experiments show
that even the solutions obtained in the last quartile are a
substantial improvement on those obtained with DE-WF.
Regarding CPU time, DE-SA and DE-WF require approxi-

mately 22 h per run to obtain the optimal designs. There is no
substantial difference between both techniques, since a high
percentage corresponds to the evaluation of the fitness
function in Aspen Plus. Authors such as Vazquez–Castillo
et al. (2009) optimize Intensified distillation systems in qua-
ternary mixtures through genetic algorithms, evaluating
12000 functions in a time between 8 and 10 h. Li et al., (2020)
employ Simulated annealing for distillation process for se-
parating benzene-isopropanol-water evaluating 81,000 in a
time of 18 h. Recently, Lyu et al., (2021), report CPU time from
13 to 69 h to evaluate between 40,000 and 140,000 individuals,
per run, in the optimization of three separation systems in
ternary mixtures through dynamical DE. They propose the
parelization of the evaluation of the objective function re-
ducing substantially the time, however this implementation
slightly affects the quality of the solution. They report that

Fig. 6 – Statistical analysis comparing DE-SA and DE-WF.

112 Chemical Engineering Research and Design 189 (2023) 98–116

the complexity of the case study will increase the time it
takes for an Aspen simulation to converge. Some other au-
thors omit to report the time and only establish as a point of
comparison the number of function evaluations (Vázquez-
Ojeda et al., 2013).

4. Discussion of results

As shown, the optimization performed using DE coupled
with dynamic self-adaptive constraint handling successfully
tackled all kinds of optimization problems presented, from
NLP problems to multivariable MINLP problems with high
dependence among variables and optimization of a distilla-
tion train. The results evidence the robustness of the opti-
mization strategy composed of a DE algorithm and dynamic
self-adaptive constraint handling supported by a self-adap-
tation dynamic threshold. In addition, the approach im-
plemented demonstrated that the penalization strategy has a
large influence on the trend of the results. This was estab-
lished as the optimization was conducted using a DE algo-
rithm in both cases, DE-SA and DE-WF, but the best
performance was attributed to DE-SA. In general terms, the
performance of DE-SA shows clear dominance over DE-WF in
terms of the quality of the optimal values obtained (best fit-
ness function) and numerical effort and computing time. It is
assumed that this behavior is triggered by means of efficient
exploration of the search space, which is powered by the
constraint handling technique to an important degree. In
addition, the structure of the penalization, composed of se-
quential self-adaptive and dynamic penalizations, led the
population towards the best values of the objective function.
Notice that the dynamic self-adaptive constraint handling
was successfully applied to penalize in a proportional way
according to the degree of deviation in relation to the target
established. A key factor in this mechanism is the modula-
tion of relaxing and stiffening of the dynamic threshold de-
pending on the behavior of the fitness function of the
population during the optimization process.
Thus, through the optimization supported by adequate

constraint handling (DE-SA), the following benefits were ob-
tained: optimal fitness functions were obtained using regular
numbers of function evaluations, with neither large popula-
tions nor a large number of generations. For instance, com-
pared with a repair algorithm, DE-SA required 20,000
function evaluations, while the repair algorithm performed
2000,000 function evaluations. In addition, the optimal in-
dividual for the repair algorithm was determined in evalua-
tion 120, whereas the best individual for DE-SA was found in
evaluation 35. On the other hand, compared with DE-WF, a
roughly 50% reduction in computing time and better fitness
functions were determined for DE-SA. In addition, optimi-
zation of the distillation train led to a 56% reduction in re-
boiler duty and 26% fewer stages.
The optimization results for the distillation train were

corroborated by rigorous statistical analysis, using the
bootstrap signed-rank test, confidence intervals and box
diagrams. Hypothesis analysis using the bootstrap signed-
rank test showed that effectively DE-SA has better perfor-
mance that DE-WF. Similarly, the confidence intervals and
box diagrams evidenced that the fitness function obtained
with DE-SA is less dispersed than that computed with DE-
WF. In fact, it was obvious that the worst fitness function
obtained with DE-SA was better than the best one obtained
with DE-WF.

Hence, based on the results obtained, it is clear that the
constraint handling technique is a cornerstone for success-
fully dealing with optimization problems. Besides that, the
experience showed that the dynamic self-adaptive con-
straint handling improves the performance of the DE algo-
rithm. At the same time, it was demonstrated that the
implementation of robust statistical tools is an important
factor to support optimization results.

5. Conclusions

This work introduces a novel self-adaptive constraint hand-
ling technique coupled to a Differential Evolution algorithm
(DE-SA) based on a self-adaptation dynamic threshold, self-
adaptation factors (weights) and added penalization due to
an interest in design variables. The optimization perfor-
mance of DE-SA was compared with that using the con-
straint technique based on a weight function coupled to a
Differential Evolution algorithm (DE-WF). In addition, to va-
lidate our proposal, the performance of DE-SA was also
compared with that of a repair algorithm proposed by
Kheawhom (2010) to optimize some benchmark functions,
and with the optimal value determined by Edgar et al. (2001)
who used a deterministic method to optimize typical che-
mical engineering problems. Finally, a distillation train op-
timization problem was solved with DE-SA and DE-WF. To
compare results and perform statistical analysis, we carried
out 30 runs under the same conditions, for each technique.
The comparative behavior is essentially based on the con-
straint handling approaches, not on the optimization algo-
rithm (DE) itself.
The optimization results for the benchmark functions

indicate that the best performance is given by DE-SA. In fact,
the repair algorithm and DE-SA led to the same fitness
function optimal values but DE-SA used fewer function
evaluations and less computing time than the repair algo-
rithm. In addition, the optimal values obtained by DE-WF
were larger than those reported by Kheawhom (2010). Simi-
larly, optimization of the chemical engineering problems
showed that the best fitness function values were obtained
using DE-SA, using less computational time and numerical
effort than the optimization process carried out by DE-WF to
find the best solution reported by Edgar et al. (2001). In the
distillation train problem, the best compromise (heat duty
and total number of stages) for the distillation train was
found using DE-SA. So, designs with both less energy con-
sumption (heat duty) and a smaller total number of stages
were determined, compared with DE-WF. These conclusions
are supported by statistical analysis.
The results shown for DE-SA in all case studies, are at-

tributed to the following features:

• Feasible individuals
The feasibility of an individual determines whether that
individual’s information can be used to focus the search in
feasible areas and avoid exploration in non-feasible areas.
Thus, no promissory search zones are segregated by the
algorithm.

• Dynamic threshold
The dynamic threshold is applied to inequality constraints
so equality constraints must be converted into their in-
equality form through a small tolerance value (epsilon).
The main characteristic of the dynamic threshold is the
relaxation/stiffness of the equality constraints through the

113Chemical Engineering Research and Design 189 (2023) 98–116

epsilon tolerance, allowing the population to follow the
best search trajectories based on information from pre-
vious generations. Eventually, progressive reduction of the
dynamic threshold enables the population to fulfill all the
equality constraints.

• Self-adaptation factors based on dynamic threshold
Through the self-adaptation of penalty factors based on
the magnitude of constraint violations (according to the
dynamic threshold value), the algorithm identifies and
classifies individuals with the best characteristics and
segregates those whose degree of deviation from a valid
constraint is larger. When the residuals are large, a strong
penalization is applied. For individuals with low con-
straint violation, the penalization is weak.

• Self-adaptation factors (weights) based on number of
violated constraints
This implementation allows identification of the number
of constraints that are violated regardless of their magni-
tude, increasing the effect of the self-adaptation factors
(see previous paragraph). Thus, for each individual, if the
number of violated constraints is small the penalization is
weak, and it becomes stronger with a larger number of
violated constraints.

• Constraint of design variables

We apply this type of penalty to guide the search towards
solutions to find the appropriate value of a specific design
variable. The proposed penalty method decreases the final
fitness function value only when all constraints lie within the
dynamic threshold, for the minimization problem.
It is evident that the constraint handling technique pro-

posed in this work has an effective selection pressure even
when the total amount of constraint violation decreases.
Additionally, it allows a suitable convergence to the feasible
regions of the search space and leads the population towards
the best values of the fitness function, in all case studies. DE-
SA is a worthy tool since it is able to deal with optimization
problems subject to equality and inequality constraints and
interdependence on the optimization variables. Therefore, to
further evaluate the proposed technique, our future work
aims to couple the dynamic self-adaptive constraint hand-
ling technique to other evolutionary algorithms to optimize
more complex chemical engineering processes.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Constraint handling with self-
adaptation for the distillation train problem

See. Fig. A1, Fig. A2, Fig. A3. and Fig. A4.
Implementation of the constraint handling technique for

the case of the distillation train is detailed below. The self-
adaptive constraint handling approach begins by verifying if
the individual Zi G, is feasible. In this step Qfitness and
violatotal values are return to DE algorithm and shows the
Figure A.1.

• An infeasible individual is when Aspen One non con-
vergence (viola is1convergence), and worst value at the fitness

function, Qmax is assigned. The purities xi
pur and recoveries

xi
rec are set to a “bad” value (0.01). In this case, for violapur

and violarec the Ncomponents value are assigned.

Fig. A2 – Step 2 of the self-adaptive constraint handling
technique.

Fig. A1 – Step 1 of the self-adaptive constraint handling
technique.

Fig. A3 – Step 3 of the self-adaptive constraint handling
technique.

114 Chemical Engineering Research and Design 189 (2023) 98–116

• For a feasible individual, the fitness function Qfitness is
calculated using Aspen One (Qtotal), violaconvergence is 0, and
the purities, xi

pur and recoveries, xi
rec for each component

are reported.

For the feasible individual, we calculate the violation
magnitude, for each component, accordance with dynamic
threshold value, . The magnitude are obtained with the re-
sidual between the target value xtarget

pur and the achieved value

xi
pur of purities. With residual, wi

pur and Qpur is calculated.
For recoveries likewise is applied and obtain thewi

rec andQrec.
Finally, computes the Qpen adding Qpur, Qrec and Qtotal. When
the individual meet whole constraints, Qpen is not pena-
lized and assigned at Qnum_pen (see Figure A.2). In addition, we
determine the total number of no accomplished con-
straints violatotal with the sum of violapur and violarec values
(see Figure A.3). These values are obtained count the viola-
tions of purities and recoveries for each component for de-
termines, wnum_p en and Qnum_pen. In this step Qnum_pen and

violatotal values are return to DE algorithm.
Finally, only individuals that accomplish whole con-

straints decrease the fitness function. This penalization favor
the search in feasible spaces where the heat duty is mini-
mized and also reduces the total number of stages of the
distillation scheme. We determines the factorwstages with the
relationship between a design value heuristic, NTmax and total
number of stages, NTtotal. When <NT NTtotal max ob-
tain Qpen_stages.
that and assign to Qfitness, otherwise Qfitness is Qnum_pen (see

Figure A.4).

References

Adeli, H., Cheng, N.T., 1994. Augmented Lagrangian genetic al-
gorithm for structural optimization. J. Aerosp. Eng. 7 (1),
104–118.

Asafuddoula, M., Ray, T., Sarker, R., 2015. A differential evolution
algorithm with constraint sequencing: An efficient approach
for problems with inequality constraints. Appl. Soft Comput.
36, 101–113.

Aspen Plus 13.0, 2007. User Models. Aspen Technology, Inc.
Austbø, B., Gundersen, T., 2016. Impact of problem formulation
on LNG process optimization. AIChE J. 62 (10), 3598–3610.

Austbø, B., Wahl, P.E., Gundersen, T., 2013. Constraint handling in
stochastic optimization algorithms for natural gas liquefac-
tion processes. Computer Aided Chem. Eng. 32, 445–450.

Babu, B.V., Angira, R., 2006. Modified differential evolution (MDE)
for optimization of non-linear chemical processes. Comput.
Chem. Eng. 30 (6–7), 989–1002.

Ben, Hamida, S., 2016. Extension of evolutionary algorithms to
constrained optimization. Metaheuristics. Springer, Cham, pp.
329–356.

Boukouvala, F., Ierapetritou, M.G., 2014. Derivative-free optimi-
zation for expensive constrained problems using a novel ex-
pected improvement objective function. AIChE J. 60 (7),
2462–2474.

Chanthasuwannasin, M., Kottititum, B., Srinophakun, T., 2017. A
mixed coding scheme of a particle swarm optimization and a
hybrid genetic algorithm with sequential quadratic program-
ming for mixed integer nonlinear programming in common
chemical engineering practice. Chem. Eng. Commun. 204 (8),
840–851.

Coello, C.A.C., 2002. Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art. Comput. Methods Appl. Mech.
Eng. 191 (11–12), 1245–1287.

Coello, Coello, C.A., 1999. Self-adaptive penalties for GA-based
optimization. Evolutionary Computation (CEC 99). Proc. Congr.
Evolut. Comput. 1, 573–580.

Coello Coello, C. A., Mezura Montes, E, 2002. Constraint-
handling in genetic algorithms through the use of dom-
inance-based tournament selection. Adv. Eng. Inform. 16
(3), 193–203.

Contreras - Zarazúa, G., Jasso - Villegas, M.E., Ramírez - Márquez,
C., Sánchez - Ramírez, E., Vázquez - Castillo, J.A., Segovia -
Hernández, J.G., 2021. Design and intensification of distillation
processes for furfural and Co-products purification con-
sidering economic, environmental, safety and control issues.
Chem. Eng. Process. Process.Intensif. 159, 108218.

Dadios, E., Ashraf, J., 2006. Genetic algorithm with adaptive and
dynamic penalty functions for the selection of cleaner pro-
duction measures: a constrained optimization problem.
Clean. Technol. Environ. Policy 8 (2), 85–95.

Dasgupta, D., Michalewicz, Z., 1997. Evolutionary algorithms—an
overview. Evolutionary Algorithms in Engineering
Applications. Springer, Berlin, Heidelberg, pp. 3–28.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2000. A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. In International conference on parallel
problem solving from nature 849–858. https://doi.org/10.1007/
3-540-45356-3_83

Diwekar, U.M., Grossmann, I.E., Rubin, E.S., 1992. An MINLP pro-
cess synthesizer for a sequential modular simulator. Ind. Eng.
Chem. Res. 31 (1), 313–322.

Edgar, T.F., Himmelblau, D.M., Lasdon, L.S., 2001. Optimization of
Chemical Processes. McGraw-Hill, Boston.

Fister, I., Brest, J., Iglesias, A., Galvez, A., Deb, S., 2021. On selec-
tion of a benchmark by determining the Algorithms’ qualities.
IEEE Access 9, 51166–51178. https://doi.org/10.1109/ACCESS.
2021.3058285

Franke, M.B., 2019. Mixed-integer optimization of distillation se-
quences with Aspen Plus: a practical approach. Comput.
Chem. Eng. 131, 106583.

Gómez – Castro, F.I., Segovia - Hernández, J.G., Hernández, S.,
Gutiérrez – Antonio, C., Briones – Ramírez, A., Gamiño –
Arroyo, Z, 2015. Design of non-equilibrium stage separation
systems by a stochastic optimization approach for a class of
mixtures. Chem. Eng. Process.: Process.Intensif. 88, 58–69.

Hesterberg, T., 2011. Bootstrap. Wiley Interdiscip. Rev.: Comput.
Stat. 3 (6), 497–526.

Homaifar, A., Qi, C.X., Lai, S.H., 1994. Constrained optimization
via genetic algorithms. Simulation 62 (4), 242–253.

Joines, J., Houck, C., 1994. On the use of non-stationary penalty
functions to solve nonlinear constrained optimization pro-
blems with GA's. Proc. 1st IEEE Conf. Evolut. Comput., Orlando
579–584.

Kazarlis, S., Petridis, V., 1998. Varying fitness functions in genetic
algorithms: Studying the rate of increase of the dynamic
penalty terms. International Conference on Parallel Problem

Fig. A4 – Step 4 of the constraint handling approach.

115Chemical Engineering Research and Design 189 (2023) 98–116

Solving from Nature. Springer,, Berlin, Heidelberg, pp.
211–220.

Kheawhom, S., 2010. Efficient constraint handling scheme for dif-
ferential evolutionary algorithm in solving chemical engineering
optimization problem. J. Ind. Eng. Chem. 16 (4), 620–628.

Kiss, A.A., Segovia-Hernández, J.G., Bildea, C.S., Miranda-Galindo,
E.Y., Hernández, S., 2012. Reactive DWC leading the way to
FAME and fortune. Fuel 95, 352–359 In press.

Leboreiro, J., Acevedo, J., 2004. Processes synthesis and design of
distillation sequences using modular simulators: a genetic
algorithm framework. Comput. Chem. Eng. 28 (8), 1223–1236.

Liepins, G., Vose, M., 1990. Representational issues in genetic
optimization. J. Exp. Theor. Artif. Intell. 2 (2), 101–115.

Lyu, H., Cui, C., Zhang, X., Sun, J., 2021. Population-distributed
stochastic optimization for distillation processes: im-
plementation and distribution strategy. Chem. Eng. Res. Des.
168, 357–368.

Lyu, H., Zhang, X., Cui, C., Sun, J., 2022. Adaptive superstructure
for multiple-interconnection process synthesis: Eliminate
unnecessary flowsheet predetermination to reduce com-
plexity. Chem. Eng. Process. -Process. Intensif. 171, 108731.

Medina - Herrera, N., Tuttuti - Ávila, S., Jiménez - Gutiérrez, A.,
Segovia - Hernández, J.G., 2017. Optimal design of a multi-
product reactive distillation system for silanes production.
Comput. Chem. Eng. 105, 132–141.

Mezura Montes, E., Coello Coello, C. A, 2011. Constraint-handling
in nature-inspired numerical optimization: past, present and
future. Swarm Evolut. Comput. 1 (4), 173–194.

Michalewicz, Z., Attia, N., 1994. Evolutionary optimization of
constrained problems. Proc. 3rd Annu. Conf. Evolut. Program.
Singap. 98–108.

More, R.K., Bulasara, V.K., Uppaluri, R., Banjara, V.R., 2010.
Optimization of crude distillation system using aspen plus:
Effect of binary feed selection on grass-root design. Chem.
Eng. Res. Des. 88 (2), 121–134.

Na, J., Lim, Y., Han, C., 2017. A modified DIRECT algorithm for
hidden constraints in an LNG process optimization. Energy
126, 488–500.

Palma - Barrera, J.P., Sánchez - Ramírez, E., Ramírez - Márquez,
C., Cervantes - Jauregui, J.A., Segovia - Hernández, J.G., 2019.
Reactive distillation column design for tetraethoxysilane
(TEOS) production. Part II: dynamic properties and inherent
safety. Ind. Eng. Chem. Res. 58, 259–275.

Riche, R.L., Haftka, R.T., 1997. Evolutionary optimization of
composite structures. Evolutionary Algorithms in Engineering
Applications. Springer, Berlin, Heidelberg, pp. 87–102.

Sreepathi, B.K., Rangaiah, G.P., 2017. Optimization of heat ex-
changer network retrofitting: comparison of penalty function
and feasibility approach for handling constraints. Multi
Object. Optim. Tech. Appl. Chem. Eng. 501–532.

Srinivas, M., Rangaiah, G.P., 2007. Differential evolution with tabu
list for solving nonlinear and mixed-integer nonlinear pro-
gramming problems. Ind. Eng. Chem. Res. 46 (22), 7126–7135.

Storn, R.M., Price, K.V., 1997. Differential evolutions a simple and
efficient heuristics for global optimization. J. Glob. Optim. 11,
341–359.

Summanwar, V.S., Jayaraman, V.K., Kulkarni, B.D., Kusumakar,
H.S., Gupta, K., Rajesh, J., 2002. Solution of constrained opti-
mization problems by multi-objective genetic algorithm.
Comput. Chem. Eng. 26 (10), 1481–1492.

Takahama, T., Sakai, S., 2006. Constrained optimization by the ε
constrained differential evolution with gradient-based muta-
tion and feasible elites. IEEE Int. Conf. Evolut. Comput.
Vanc. 1–8.

Takahama, T., Sakai, S., 2010. Constrained optimization by the ε
constrained differential evolution with an archive and gra-
dient-based mutation. IEEE Congr. Evolut. Comput. 1–9.

Teh, Y.S., Rangaiah, G.P., 2003. Tabu search for global optimiza-
tion of continuous functions with application to phase equi-
librium calculations. Comput. Chem. Eng. 27 (11), 1665–1679.

Vazquez–Castillo, J.A., Venegas–Sánchez, J.A.,
Segovia–Hernández, J.G., Hernández-Escoto, H., Hernandez,
S., Gutiérrez–Antonio, C., Briones–Ramírez, A., 2009. Design
and optimization, using genetic algorithms, of intensified
distillation systems for a class of quaternary mixtures.
Comput. Chem. Eng. 33 (11), 1841–1850.

Vázquez-Ojeda, M., Segovia - Hernández, J.G., Hernández, S.,
Hernández – Aguirre, A., Kiss, A.A, 2013. Design and optimi-
zation of an ethanol dehydration process using stochastic
methods. Sep. Purif. Technol. 105, 90–97.

Wong, K.P., Dong, Z.Y., 2005. Differential evolution, an alternative
approach to evolutionary algorithm. Proc. 13th Int. Conf.
Intell. Syst. Appl. Power Syst. 73–83.

Yiqing, L., Xigang, Y., Yongjian, L., 2007. An improved PSO algo-
rithm for solving non-convex NLP/MINLP problems with
equality constraints. Comput. Chem. Eng. 31 (3), 153–162.

Yu, X., Lu, Y., Wang, X., Luo, X., Cai, M., 2019. An effective im-
proved differential evolution algorithm to solve constrained
optimization problems. Soft Comput. 23 (7), 2409–2427.

Zahara, E., Kao, Y.T., 2009. Hybrid Nelder–Mead simplex search
and particle swarm optimization for constrained engineering
design problems. Expert Syst. Appl. 36 (2), 3880–3886.

Zhang, H., Rangaiah, G.P., 2012. An efficient constraint hand-
ling method with integrated differential evolution for nu-
merical and engineering optimization. Comput. Chem. Eng.
37, 74–88.

Zielinski, K., Laur, R., 2008. Stopping criteria for differential evo-
lution in constrained single-objective optimization. Advances
in Differential Evolution. Springer, Berlin, Heidelberg, pp.
111–138.

116 Chemical Engineering Research and Design 189 (2023) 98–116

	Process optimization using a dynamic self-adaptive constraint handling technique coupled to a Differential Evolution algorit...
	1. Introduction
	2. Optimization algorithm and constraint handling
	2.1. Self-adaptive constraint handling technique
	2.2. Differential evolution algorithm
	2.3. Constrained optimization procedure

	3. Case studies and results
	3.1. Optimization of benchmark functions
	3.1.1. Results

	3.2. Optimization of typical chemical engineering problems
	3.2.1. Results

	3.3. Distillation train
	3.3.1. Results
	3.3.2. Comparative analysis

	4. Discussion of results
	5. Conclusions
	Appendix A. Constraint handling with self-adaptation for the distillation train problem

