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a b s t r a c t

In various intensified processes, the presence of reactive catalytic packing is essential. These can be visu-
alized as multiscale systems where a diverse mass, energy transfer, and chemical reaction occurs in the
catalytic porous medium (i.e., the catalyst layer). This reactive microscopic scale structure influences effi-
ciency. Given the hierarchical nature of the packing in the intensification systems, this paper proposes the
derivation of an upscaled model that describes the first-order surface chemical reaction process in this
catalyst layer. The upscaling is carried out using the volume averaging theory. The resulting model
includes effective coefficients which depend on the transport and reaction parameters influenced by
the unit cell geometry. The model is validated by comparing average temperature and concentration pro-
files obtained from numerical experiments using pore representations of a catalyst packing. The results
show the effective parameters that can be used to design catalytic structures in the intensified process.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

There are several processes of intensification that integrate
heterogeneous catalytic reaction and separation process in a single
multifunctional unit (e.g. catalytic distillation, reactive absorption,
among others)(Stankiewicz, 2003). The advantages of this type of
unit are related to high reaction conversion, low energy consump-
tion, energy savings, and simple operation, and they have been
successfully applied in multiple processes in the chemical engi-
neering industry (Harmsen, 2007; Segovia-Hernández et al.,
2015; Haase et al., 2022). The modeling of this system is complex
because it integrates thermodynamics, hydrodynamics, mass and
heat transfer, and chemical kinetics reaction, including the type,
geometry, and structure of internals and the influence characteris-
tics of the catalytic packing, which affects the whole performance
process significantly.

Using computational fluid dynamics (i.e., CFD) simulations is a
tool that has been used extensively to characterize the hydrody-
namics and mass transfer within the packed structure. Recently,
the combination of CFD simulation processes has been proposed
to relate the influence of catalytic packing structure on variables
such as conversion, yield, and purity in catalytic distillation
(Macfarlan et al., 2022). In these works, the results of CFD’s hydro-
dynamic properties and mass transfer efficiency serve as input
data for rigorous simulation processes. This tool has determined
the hydrodynamic efficiency in the intensification process of cat-
alytic separation columns using representative packing elements
(van Baten and Krishna, 2002; Egorov et al., 2005). Thus, concern-
ing the development of catalytic packing structures, the use of CFD
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Nomenclature

av interfacial surface area per unit cell volume (m�1)
avh heat transfer coefficient per volume (W/(m3 K))
A0 pre-exponential factor (m s�1)
bmp closure variable for the m-phase associated to the

source r Tp
� �p

cAb concentration of chemical species A in the fluid phase,
(mol/m3)

cAb
� �b intrinsic average concentration of chemical species A,

mol/m3

~cA spatial deviations of the concentration of chemical spe-
cies A, mol/m3

cP specific heat capacity at constant pressure (J/(kg K))
dp equivalent particle diameter, (m)
D�

b total dispersion tensor under heterogeneous reaction,
(m2/s)

Db molecular diffusion coefficient, (m2/s)
E activation energy, (J/mol)
F arbitrary function of Taylor series
fa closure variable associated with the macroscopic source

r cAb
� �b in the problem of dispersion with heteroge-

neous reaction, (m)
gb closure variable associated with the macroscopic source

cAb
� �b in the problem of dispersion with heterogeneous
reaction

g gravitational acceleration vector, ms�2

H heterogeneous reaction heat (kJ/mol)
Hb effective permeability tensor (m2)
I unit tensor
k heterogeneous reaction rate coefficient, (m/s)
k Trirh heterogeneous reaction rate coefficient in terms of

intrinsic temperature Trh ir, s�1

k�eff , effective reaction rate coefficient under dispersive con-
ditions, s�1

km thermal conductivity of the m-phase (m ¼ b;r) (W/(m
K))

Kmp effective thermal coefficient in the macroscopic equa-
tion for the m-phase associated to Tp

� �p, an asterisk
indicates dispersive effects (W/(m K))

L characteristic length associated with volume averaged
quantities, m

‘c length of the unit cell, m
‘m characteristic length for the m-phase, (m)
nbr unit normal vector pointing from the b-phase towards

the r-phase
pb pressure in the b-phase, Pa

pb
D Eb

intrinsic averaged pressure in the b-phase, Pa
~pb pressure deviations in the b-phase, Pa
PeD cell Péclet number on basis of mass diffusivity
PeT cell Péclet number on basis of thermal diffusivity
q heat generation (kJ/(m3 s))
r special closure variable for the heterogeneous chemical

reaction case
r0 radius of the averaging volume V, m
rm, vector locating the m-phase with respect to the centroid

of the averaging volume (m ¼ b;r) (m)
sm closure variable in the macroscopic equation for the m-

phase associated to the source ( Tmh im � Tp
� �p)

t time, s
t� characteristic process time, s
Tm point temperature of the m-phase, (K)
ump convective-like term for them-phase associated to Tp

� �p
(m;p ¼ b;r), (m/s)

vb velocity field, (m/s)
~vb spatial deviations of the velocity field, (m/s)
vah i superficial velocity field, (m/s)
vah i magnitude of the superficial velocity, (m/s)
V averaging volume, (m3)
V magnitude of the averaging domain, (m3)
x; y Cartesian coordinates (m)
ya position vector that locates points in the a-phase rela-

tive to the centroid of V, m

Greek letters
em volume fraction of the m-phase (m ¼ b;r)
j ratio of thermal conductivities
l dynamic viscosity (kg m�1 s�1)
qm density of the m-phase (m ¼ b;r), (kg m�3)
n heat distribution coefficient
u, microscale Thiele modulus with heterogeneous reaction

Sub and superscripts
b fluid phase
r solid phase

Special Symbols
~/ deviation from intrinsic average
/h i superficial average
/h im intrinsic average for the m-phase, (m ¼ b;r)
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has been frequently used to study the characteristics of fluid flow
and mass transfer in the packing structure, obtaining acceptable
results compared to experimental data (Mazarei Sotoodeh et al.,
2018; Wang et al., 2020; Xue et al., 2021).

It has been pointed out that CFD simulations on the catalytic
packing related to simulation processes are not enough to perform
optimizations of the catalytic structure. This is because the effi-
ciency is not solely influenced by the hydrodynamics and mass
transfer characteristics of the catalytic packing internals but also
involves the multicomponent mass transfer and the heterogenous
reaction process in the catalytic porous medium (i.e., catalyst
layer) (Wang et al., 2017; Hong et al., 2021). Although hydrody-
namic and vapor–liquid mass transfer can be simulated in repre-
sentative catalytic packing units, the efficiency of the
intensification process with reactive columns is additionally influ-
enced by simultaneous heterogeneous chemical reactions and
2

mass transport of the components in the catalytic porous medium
in the catalyst layer. This complex structure that conforms to the
column may be prohibitively to simulate employing CFD due to
the need for enormous required computational resources, limiting
the application of this type of computational tool in process simu-
lation and optimization schemes(Amini et al., 2019).

Despite these remarkable advances in the use of CFD modeling,
for intensification process with reactive porous media, some alter-
natives can be applied to model the microscopic process of mass
transfer and reaction process in the catalyst layer at a somewhat
reasonable computational cost; considering that the determination
of structural parameters of the catalyst layer is a factor that influ-
ences the efficiency of the catalytic packing. The reactive columns
in intensification process can be conceptualized as a hierarchical
system at different scales, ranging from the catalyst layer (micro-
scopic scale) through intermediate stages such as catalytic packing
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(Darcy or macroscopic scale) to the column (mega-scale), as shown
in Fig. 1. The internal structure of the catalytic packing contains the
catalyst layers in transfer units that form the complete catalytic
packing column in intensification process. In contrast, the catalyst
layers consist of a catalytic porous medium formed by catalytic
particle arrays. Mass and heat transport and the heterogeneous
chemical reaction occur in the reactive zones. Generally, in the
reactive separation intensification process a catalyst layers is local-
ized with vapor–liquid channels, such that most of the liquid car-
rying the reactant chemical species flow-through catalyst layers
saturating them. The reactant chemical species diffuse within the
microstructure of the catalyst layers due to the concentration gra-
dient and react on the surface of the catalytic pellets. The reactant
chemical species diffuse within the microstructure of the catalyst
layers due to the concentration gradient and react on the surface
of the catalytic pellets.

Consequently, this dispersion-reaction process within the cata-
lyst layers has significantly influenced the whole process. Under
this perspective of a hierarchical system of catalytic packing, it is
plausible to propose the development of models based on upscal-
ing methodologies. The deductions of upscaled models can be car-
ried out by several available techniques such as volume averaging
(Whitaker, 1999), homogenization (Mauri, 1991), or the thermody-
namically constrained averaging theory (Gray and Miller, 2014).
The resulting upscaled models using these techniques are usually
written in terms of effective coefficients that can be calculated
by solving ancillary closure problems on periodic representations
of the microstructure of the porous medium. These coefficients
characterize the transport from the pore scale to the macroscopic
counterparts.

For processes involving mass and heat transfer with chemical
reaction in a catalytic porous medium, such as the dispersion-
reactive process in catalyst beds, various upscaling analyses using
volume averaging have been proposed. In the transport of mass
with reaction, the initial analysis works focused on diffusive pro-
cesses coupled with heterogeneous chemical reactions in porous
media (Ryan, 1983; Shapiro and Brenner, 1986; Shapiro and
Brenner, 1988; Whitaker, 1987), extending later to upscale consid-
ering dispersion with heterogeneous chemical reaction with first
order chemical kinetics (Ryan, 1983; Shapiro and Brenner, 1986;
Whitaker, 1987; Valdes-Parada and Alvarez-Ramirez, 2010). The
Fig. 1. Scales associated with general catalytic intensification column and

3

effective coefficients determined in these models are shown to
be essentially dependent on the parameters characterizing the nat-
ure and magnitude of the surface chemical reaction rate and veloc-
ity, influenced in turn by the essential geometrical characteristics
of the unit cell used for the determination of the coefficients
(Valdés-Parada et al., 2011; Valdés-Parada et al., 2017). Recently,
more complex reaction kinetics have been considered in the
derivation of upscaled models using the volume averaging theory;
these include reversible and nonlinear reactions (e.g., Michaelis–
Menten kinetics.), where explored a linearization of the nonlinear
kinetics to reduce the mathematical complexity of the associated
closure problems to close the macroscopic model (Wood et al.,
2007; Heße et al., 2009; Porta et al., 2012; Lugo-Méndez et al.,
2015; de los Santos-Sánchez et al., 2016; Qiu et al., 2017). One
aspect of these studies is that they were performed under isother-
mal conditions. However, heterogeneous reaction processes are
generally coupled to heat transfer processes with chemical reac-
tion sources. Considering energy transport in porous media,
upscaling analyses based on the volume averaging theory have
been proposed, resulting in models based on the assumptions of
local thermal equilibrium and non-equilibrium (Cheremisinoff,
1989; Whitaker, 1991; Quintard and Whitaker, 1993). The
upscaled model results in one or two equations to describe the dis-
persive heat transport in porous media consisting of a fluid and a
solid. The effective coefficients associated with the heat transfer
mechanism, including interfacial heat transfer, are reported to be
dependent mainly on the thermal conductivities of the phases,
the flow velocity, and the geometry of the unit cell (Quintard
et al., 1997). The upscaling of heat transfer with a homogeneous
or heterogeneous heat source has been modeled assuming a con-
stant and uniform source (Whitaker, 1986; Quintard and
Whitaker, 2000). The above is generally not applicable for the case
of a chemical reaction source which is usually coupled to the mass
equations through a nonlinear Arrhenius law type equation. Recent
work has considered this nonlinear heat source problem by obtain-
ing a non-equilibrium model with upscaled equations that include
effective coefficients that consider the heat generation rate associ-
ated with the chemical reaction (Yang et al., 2015a; Yang et al.,
2015b).

Returning to the case study of the reactive columns in the inten-
sification process, in the catalyst layer, the heterogeneous chemical
averaging volume for solid catalytic particles and fluid liquid phase.



O.A. Luévano-Rivas, J.J. Quiroz-Ramirez, V.A. Suarez-Toriello et al. Chemical Engineering Science 265 (2023) 118206
reaction occurs on the surface of the catalytic pellets; this process
can be considered as a mass and heat transport coupled by a sur-
face chemical reaction in a catalytic porous medium. Under the
hierarchical scheme of the catalyst layer in a catalytic column, this
paper proposes to deduce the valid upscaled model using the vol-
ume averaging theory for the dispersion/reaction process of the
reactive zone formed by the catalyst layer. Since the structures of
the catalyst layers influence the efficiency in the intensification
process with catalytic packings, the resulting upscaled model and
associated effective coefficients can be used to establish appropri-
ate microstructures for the catalyst layers and eventually be used
in the design and optimization studies global simulation process.
For this purpose, in Section 2, the microscopic model that describes
the reaction process in the catalyst layer is presented. We limit our
analysis to considering a chemical species first-order Arrhenius-
type heterogeneous reaction. The heat transport is in catalytic solid
and fluid, including a heat source due to the surface reaction. In
Section 3, we develop the macroscopic models for mass and heat
transport with heterogeneous reactions using the upscaling
approach given by the frame theory of the volume averaging the-
ory. The upscaled closed models are presented in Section 4. Predic-
tions of the effective coefficients of mass and heat in simple 2D and
3D representative structures of the catalyst layer also are pre-
sented in this section. The upscaled model is valid compared with
pore-scale numerical simulation in 2D structures of the catalyst
layer in Section 5. Finally, conclusions are drawn supporting the
developed upscaled model, the predictions of the effective coeffi-
cients, and validated by numerical experiments in Section 6.
2. Pores-scale model

The hierarchical nature of the catalytic intensification process is
represented in Fig. 1. We can consider that in the catalyst packing
(Macroscopic scale), the flow liquid–vapor phase occurs only in the
inter-region of the channels and catalyst layer, and the downward
liquid flows to form a liquid film along the surface of catalyst lay-
ers. Therefore, the liquid phase saturates the catalytic porous
media. The reactant chemical species are transported into the
structure of catalyst layers under the concentration gradient and
convection. The reactant species react on the catalyst pellet’s sur-
faces and only occur below the bubble point temperature in the
liquid phase. Thus, a multiphase liquid–vapor system is not consid-
ered within the catalytic porous medium. Analogously, the product
species are transported onto the catalyst layer surface in the oppo-
site direction, and mass transfer with the vapor phase occurs. In
these processes, heat is produced due to the reaction on the cata-
lyst pellet’s surfaces.

The reaction process under consideration inside the catalyst
layer, described before, can be established if we let us consider
the catalyst pellets as a rigid and homogeneous medium that is
fully saturated with a liquid phase (b-phase), as sketched in porous
catalyst media of Fig. 1. We consider the process of diffusion and
convection in the porous media involving a heterogeneous reaction
at the surface of the solid phase (catalyst pellets), r-phase, which is
covered by the reactive material. The heat is transported by con-
vection and conduction for the whole catalytic packing, which
includes fluid and solid phases, with no contribution of convection
for the last one. A source of heat is present due to the surface reac-
tion. The radiation exchanges are not considered. The link between
heat and mass transport gives by Arrhenius-type kinetic functions.
2.1. Microscopic model

Assuming that the fluid properties do not depend strongly on
the temperature and concentrations, and the momentum balance
4

in the pores of the catalyst porous media can be considered inde-
pendent of the mass and heat balances,

r � vb ¼ 0; inthe b� phase ð1aÞ

qb

@vb

@t
þ vb � rvb

� �
¼ �rpb þ qbgþ lbr2vb; inthe b� phase

ð1bÞ

vb ¼ 0; at Abr ð1cÞ
In the above equations, qb andlb represent the fluid density and vis-
cosity.We assume the velocity of the liquid phase is such in the reac-
tive zone that the liquid phase completely saturates the catalytic
porous media. Considering the flow is steady and incompressible,
the inertial term in Eq. (1b) can be considered negligible. The non-
slip condition applies at Abr. Recently, (Lasseux et al., 2016), the
model for slightly compressible gas slip flow in porous media was
developed by upscaling the pore-scale boundary value problem and
a vapor phase model could be considered. Since accounting for the
inertial effects provided a better representation for the computation
of the velocity field, it increases the computational time.We suppose
the catalytic reaction only occurs in the liquid phase saturating the
catalytic packaging and no phase change occurs inside the catalytic
layer.

Let us consider the transport process of diffusion and convection
in a porous media for chemical species A carried by the fluid phase,
involving a chemical reaction at the solid–fluid interface. For diluted
species, the value of the diffusion coefficient is specified constant.
For multicomponent non-dilute solutions, the process is more com-
plex due to the diffusion coefficient corresponding to a diffusivity
matrix (Vynnycky and Birgersson, 2003; Quintard et al., 2006). The
chemical reaction could be a complex process that involves a series
of reaction mechanisms; in this system, we simplified by assuming
that the reaction of the A component reacts with in excess B compo-
nent located at the interface of the solid and the fluid; assuming the
reaction takes place until the component B is not exhausted. Addi-
tionally, the reaction products are assumed initially as passive com-
ponents, and the transport description does not necessarily include
them in the pore scale. The generalized reaction scheme for an
exothermic reaction can be simplified as

Aþ B�!C;DHrxn ð2Þ
The kinetic law of reaction is supposed to be a first-order law con-
cerning chemical species A, and the Arrhenius equation represents
the heterogeneous reaction rate,

srxn ¼ kcAb ; k ¼ A0e�E=RTr ð3Þ
A0 represents the pre-exponential factor, E is the activation energy,
and R is the gas ideal constant. The first-order Arrhenius-type is
used here to describe heterogeneous chemical reactions. The first-
order Arrhenius-type describes the heterogeneous chemical reac-
tions to simplify the analysis of the upscaling up process to be car-
ried out in the following sections. However, it should be
emphasized that different kinetics correspond to specific reaction
mechanisms, and non-linear kinetics may be required. In the Eq.
(3), We notice the reaction depends on both the concentration of
chemical species A and Tr is the temperature at the solid–fluid
interface. Therefore thermal is coupled with mass transport. The
reactive process described is represented through the following
governing equations and boundary conditions for the transport of
mass and heat at the pore-scale (i.e. the microscale)

@cAb
@t

þr � vcAb
� � ¼ r DbrcAb

� �
; in b� phase ð4aÞ

� nbr �DbrcAb ¼ srxn; in Abr ð4bÞ
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where Db is the molecular diffusion coefficient that, as mentioned
before, is a constant value. The microscale formulation is completed
with the corresponding boundary conditions at macroscale bound-
aries. The corresponding energy balance for the described reactive
system is

qcp
� �

b

@Tb

@t
þr � vTb

� �� 	
¼ r kbrTb

� �
; in b� phase ð5aÞ

qcp
� �

r
@Tr
@t

¼ r krrTrð Þ; in r� phase ð5bÞ
nbr � kbrTb ¼ nbr � krrTr þ srxnH; at Abr ð5cÞ
Tb ¼ Tr; at Abr ð5dÞ

where nbr is the unit normal vector pointing from b- to r- phase
(nbr ¼ �nbr). The velocity field, vb, is obtained by solving the Stokes
or Navier–Stokes equations under the assumptions of E*qs. (1a)-
(1c). H represents the heat of the reaction, which is assumed con-
stant and independent of temperature. Theoretically, H depends
on the temperature and volume heat capacities of the fluid and solid
phases, qcp

� �
m, and thermal conductivity, km;m ¼ b;r respectively.

However, as an initial approximation, it is satisfactory to consider
constants for simulation purposes. For practical cases, the heat
given off by the heterogeneous chemical reaction at the surface of
the catalytic particles, H, can be considered negligible (Lei et al.,
2009). However, in this work, it is included through the boundary
condition in the microscopic model (Eq. 5c) to emphasize the con-
tribution of the reactive heat source in the upscaling processes,
which will perform in the following sections. Therefore, the energy
chemical reaction contributions in the upscaled model and the sub-
sequent global modeling could take into the duty energy require-
ments (Goortani et al., 2015). To conclude this section, some
limitations of the proposed model should be pointed out, especially
in the approach to future more complex modeling of intensified
reaction separation systems. Firstly, it has been considered that
the reactants and products are below the bubble point temperature.
Therefore a vapor–liquid mixture, essential in describing this type
of intensified system, is not considered. Furthermore, multicompo-
nent transport is not included, and the consideration of irreversible
reactions are strong assumption in this work. However, the scaling
perspective that will be developed in the following section under
the proposed assumptions and simplifications is a novel way to
approach the systematic application of the upscaling method to
address this type of complex system.
3. Upscaling procedure

The upscaling procedure of the boundary value problems, pre-
sented in the previous section, is applied to obtain the macroscopic
closed model. Different methodologies could be used to derive the
upscaled model, for instance, homogenization (Sanchez-Palencia,
1980), or volume averaging theory (Whitaker, 1999). In the present
work, we use the latter omitting the details discussed extensively
in the literature. Briefly, the averaging process is carried out by
defining an Averaging volume, V, of measure V, and characteristic
size r0, that contains both catalytic solid and fluid phase, such as
sketched in Fig. 1. The averaging volume contains all the necessary
structural information (Representative Elementary Volume (REV)
(Bear and Cheng, 2018)). The characteristic size of the averaging
domain is usually constrained under the assumption of following
length-scale separation (Wood and Valdés-Parada, 2013)

‘m;� r0 � L;m ¼ b;r ð6Þ
here ‘m represents the characteristic length associated with the b-
and r-phase (e.g. the pore diameter), and L is the characteristic
length associated with the macro-scale. Over the averaging volume,
5

the macroscale physical quantities in the reaction region, wm, are
defined by the superficial and intrinsic averaging operators,

wmh i ¼ 1
V

Z
Vm

wmdV ; m ¼ b;r; ð7aÞ

wmh im ¼ 1
Vm

Z
Vm

wmdV ; ð7bÞ

here wm represent both the concentration and temperature, cA and
Tm and Vm (with volume Vm) represents the proportion of V occu-
pied by the fluid or the solid catalytic phase in the volume V. These
two averages are related by

wmh i ¼ Vm

V
wmh im ð8Þ

where the ratio em ¼ Vm=V is the porosity, which is suppose con-
stant. The averaging process implies the application of the intrinsic
averaging operator to the microscale equations, followed by
exchange differentiation and integration using the spatial averaging
theorem (Howes and Whitaker, 1985; Gray and Miller, 2013). The
resulting average equations contain both macroscale ( wmh i) and
microscale (wm) quantities. It is necessary to express the pointwise
quantities in terms of their averages and corresponding spatial
deviations according to Gray’s (Gray, 1975) spatial decomposition

wm ¼ wmh im þ ~wm; m ¼ b;r ð9Þ
The upscaling of the reaction process model in the reactive region of
this simply intensified column begins by analyzing the flow in the
porous catalyst layer. The liquid phase flow in porous medium
has been studied extensively, and details are available elsewhere
(Whitaker, 1996; Whitaker, 1999). For momentum transport of
the b-phase, described in the Eq. (1a)), the resulting equations from
the upscaling process is the Darcy-Forchheimer equation which can
be resembles to a Darcy’s law as

vb

� � ¼ �Hb

lb

� r pb

� �b � qbg

 �

ð10Þ

where the tensor Hb is the apparent permeability defined as
H�1

b ¼ K�1
b � Iþ Fb

� �
where Kb and Fb are the intrinsic permeability

tensor and the Forchheimer correction tensor, respectively; consid-
ering no inertial, the tensorHb resembles to the intrinsic permeabil-
ity Kb. The computation of the permeability coefficient is an
achievement in solving the associated closure problem in the peri-
odic representation of the porous catalyst layer, where the reaction
occurs. In general, in this work, we use the simple geometries
involving circle (2D) and sphere (3D) obstacles in unit cells to rep-
resent the catalytic particles in the porous catalyst layer, as shown
in Fig. 1. With the aim to center the discussion in this work on the
mass and heat transfer upscaling for the reaction process in the cat-
alyst layer, the details in the solution of the predictions of perme-
ability coefficient are summarized in the A. The upscaling model
for a single-fluid in the porous catalyst layer is closed using the
results of the longitudinal intrinsic permeability (Kb;xx), which

results can fit (R2 ¼ 0:999) as functionality with the porosity for
2D and 3D unit cells, as follows

Kb;xx

‘2c
¼ �8:293� 10�4 þ 1:048� 10�4e6:575eb eb 2 0:30:8ð Þ 2D ð11aÞ

Kb;xx

‘2c
¼ �1:135� 10�3 þ 1:841� 10�4e6:039eb eb 2 0:50:8ð Þ 3D ð11bÞ

The unit cells can involve various arrangements or geometries with
the predictive perspective of the influence on the velocity rate in the
reactive system present in intensified systems (Wang et al., 2017;
Wang et al., 2020). Here we selected the most straightforward
geometry to represent the structure of a catalytic particle in the
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catalyst layer. However, the geometry of the unit cell is not con-
strained to these 2D and 3D geometries; complex models or diverse
geometries can use to compute the effective coefficients included in
the Eq. 10.

The deduction of the upscaling mass and heat transport model
with the surface reaction is presented in more detail in the follow-
ing paragraphs using the VAM. This model will describe the reac-
tive process reactive region (i.e., catalytic porous media). The
upscaling continues with the mass transport of the component A
in the reactive process in the catalyst layer. The systematical appli-
cations of the volume averaging operators over the pore-scale
model, given by the E*q. (4), results in the following macroscopic
mass transport model for the chemical component A,

eb
@ cAb
� �b
@t

þr � eb cAb
� �b vb

� �b
 �
¼ r � ebDb r cAb

� �b þ 1
Vb

Z
Abr

nbr~cAbdA

 !
� eb ~cAb~vb

� �b" #

� 1
V

Z
Abr

srxndA ð12Þ

The last term includes the heterogeneous reaction contribution
in the macroscopic mass equation. In the other hand, the
result of averaging the governing equations microscopic equa-
tion, E*q. 5 (a) and (b), the heat transfer in both phases, the
transport fluid and catalytic solid particle with surface reaction,
result as

eb qcp
� �

b

Tb

� �b
@t

þ eb qcp
� �

b
vb

� �b � r Tb

� �b
¼ r � ebkb r Tb

� �b þ 1
Vb

Z
Abr

nbr
eT bdA

 !" #
� qcp
� �

b
r

� eT b~vb

D E
þ 1
V

Z
Abr

nbr � kbrTbdA ð13Þ

er qcp
� �

r
Trh ir
@t

¼ r � ebkr r Trh ir þ 1
Vr

Z
Arb

nrb
eTrdA

 !" #

þ 1
V

Z
Arb

nrb � kbrTrdA ð14Þ

In these macroscopic heat transport equations, the first and second
integral terms on the right of Eq. (13) and (14) will be related to the
hydrodynamic dispersive-diffusive heat transport. The third inte-
gral term, written in pore-scale temperature in both equations,
includes implicit the source given by heterogeneous reaction in
the surface Abr, as is indicated by boundary condition Eq. (5c).
Additional details in the development of the averaging equation
can be found in (Whitaker, 1999). The main characteristics in the
Eqs. (12)–(14) are they contains both, macroscopic, wmh im, and devi-
ation quantities, ~wm. Under the VAM framework, determining the
functionality of the quantity deviations with the corresponding
average quantities is known as closure. This procedure involves, in
general, the following algorithm: (1) derivative of the balance equa-
tions for ~wm and boundary conditions based on the expression in the
Eq. (9); (2) impose a set of reasonable assumptions [expressed in
terms of upscaling laws (Whitaker, 1999; Wood, 2009; Wood and
Valdés-Parada, 2013)] to simplify the deviations governing equa-
tions and (3) finally derive a formal solution of the boundary-
value problem for deviations. For the mass transfer, the concentra-
tion deviation equation is achieved by subtracting the Eq. (12) to
their respective microscopic counterpart in the Eq. (4a), which
result in the following governing equations for deviations of compo-
nent A in the fluid.
6

@~cAb
@t

þr � ~vb cAb
� �b
 �

þr � vb~cAb
� �

¼ r � Dbr~cAb
� ��r � Db

Vb

Z
Abr

nbr~cAbdA� ~cAb~vb

� �b" #
� 1
Vb

�
Z
Abr

srxndA ð15Þ

We can simplify this expression based on the order of magnitude
estimates for the accumulation and diffusive terms based on the
separation of length scales, ‘b � L. Besides, the closure problem
for mass can be treated as a quasi-stable under assumption of char-
acteristic time constraints, (‘2b=Db � t�) (Whitaker, 1999; Valdés-
Parada et al., 2011; Valdés-Parada et al., 2017). As a result, it is sat-
isfied that

@~cAb
@t

� Dbr2~cAb; r � Db

Vb

Z
Abr

nbr~cAbdA

" #
� Dbr2~cAb; e�1

b r � ~vb~cAb
� �� ~vb � r~cAb ð16Þ

and the Eq. (15) simplifies to

~vb � r cAb
� �b þ vb � r~cAb ¼ r � rDb~cAb

� �þ 1
Vb

Z
Abr

srxndA ð17Þ

Performing a similar analysis, we obtain the governing equations
for fluid and solid catalytic temperature deviations by subtracting
the Eqs. (13) and (14) to Eqs (5a) and (5b), respectively, leading to

qcp
� �

b

eT b

@t
þ vb � reT b þ ~vb � r Tb

� �b !

¼ r � kbreT b


 �
� e�1

b r � kb
V

Z
Abr

nbreT bdA

" #
þ e�1

b qCp
� �

b
r

� ~vb
eT b

D E
� e�1

b

V

Z
Abr

nbr � kbreT bdA; in b� phase ð18Þ

qcp
� �

r

eTr

@t
¼ r � krreTr


 �
� e�1

r r � kr
V

Z
Arb

nrbeTrdA

" #
� e�1

r
V

�
Z
Arb

nrb � krreTrdA; in r� phase ð19Þ

Under similar assumption used in the mass analysis, the separation
of length-scale, ‘b; ‘c � L, and time-scale constraints for fluid phase,

‘2b=ab=
vb‘b
ab

þ 1

 �

� t�, and catalytic solid, ‘2r
ar

� t�, where the thermal

diffusivities are ab ¼ kb= qcp
� �

b
and ar ¼ kr= qcp

� �
r, the following

inequalities are satisfied

e�1
b r � kb

V

Z
Abr

nbr
eT bdA

" #
� r � kbreT b


 �
; e�1

r r

� kr
V

Z
Arb

nrbeTrdA

" #
� r � krreTr


 �
ð20aÞ

e�1
b r � eT b~vb

D Eb
� vb � reT b;

@eT b

@t

� � qcp
� �

b
vb � reT b þ qcp

� ��1
b
r

� kbreT b


 �
;

@eTr

@t
� qcp
� ��1

r r � krreTr


 �
ð20bÞ

and the governing equations for fluid and solid temperature devia-
tions, Eqs. 18,19 are written as
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qcp
� �

b
vb � reT b þ ~vb � r Tb

� �b
 �
¼ r � kbreT b


 �
� e�1

b kb
V

Z
Abr

nbr � reT bdA; in b� phase ð21Þ

0 ¼ r � krreTr


 �
� e�1

r kr
V

Z
Arb

nrb � rTrdA; in r� phase ð22Þ

The corresponding boundary conditions at the interface of concen-
tration and temperature deviations are obtained by applying the
spatial decomposition, Eq. (9), in Eqs. (4b), (5c) and (5d). The results
are expressed as follows

�nbr �Dbr~cAb ¼ �nbr �Dbr cAb
� �b þ srxnatAbr ð23aÞeT b ¼ eTr � Tb

� �b � Trh ir

 �

; atAbr ð23bÞ

�nbr � kbreT b ¼ �nbr � krreTr � nbr � krr Trh ir

þ nbr � kbr Tb

� �b þ srxnH ð23cÞ
In addition, a convenient assumption is that the closure problem
domain solution can be considered a periodic unit cell representing
the essential pore-scale structure. In essence, this assumption con-
stitutes an upscaling postulate (Wood and Valdés-Parada, 2013),
and we can impose the periodic boundary conditions, which implies
the average constraints for the deviations fields associated with the
loss of the information of the macroscopic boundary conditions,

~wm rð Þ ¼ ~wm rþ lkð Þ; k ¼ 1;2;3; ~wm

D Em
¼ 0; m ¼ b;r ð24Þ

where lk; k ¼ 1;2;3, are the periodic lattice vectors of the unit cell.
For the analysis of the non-isothermal catalytic region in the closure
problem, the previous closure problems deduction is consistent
with similar treatments for the mass and heat transport in porous
media (Valdes-Parada and Alvarez-Ramirez, 2010; Aguilar-Madera
et al., 2011; Valdés-Parada et al., 2020).

An aspect of the closure problems deduced above is the linkage
they present through the surface chemical reaction. Because of
these, we direct attention to the reaction rate srxn, which is explicit
on the microscopic temperature and the concentration of chemical
species A via the Eq. (3). Exploring how to express the first-order
reaction rate equation as functionality in terms of deviations and
average quantities of phase temperatures and concentration is nec-
essary. Thus, it requires expressing the first-order reaction rate
equation as functionality in terms of deviations and average quan-
tities of phase temperatures and concentration. We are concerned
with expressing the Eq. (3) in terms of only the concentration devi-
ations ~cAb in order to avoid the non-linear coupling in the interfaces
of temperature and concentration deviations in the solution of the
closure problem. The above allows the inclusion of a non-constant
surface reaction rate in the derivation of the scaling model, in con-
trast to previous models for mass transport, which consider the
reaction rate as constant. (Valdés-Parada et al., 2020). To achieve
the analysis of the reaction rate, we define as the first instance
an arbitrary function F according to the multivariate Taylor series
expansion (Yang et al., 2015a), as follows,
7

F Tm; cAb
� � ¼ F Tmh im; cAb

� �b
 �
þ Tm � Tmh im� �

@F
@Tm

����
Tm¼ Tmh im ;cAb¼ cAbh ib

þ cAb � cAb
� �b
 � @F

@cAb

����
Tm¼ Tmh im ;cAb¼ cAbh ib

þ � � �

ð25Þ
Using the spatial decomposition, Eq. (9), and based on the assump-
tion of periodicity (Lugo-Méndez et al., 2015), the Taylor series can
be expressed as

F Tm; cAb
� � ¼ F Tmh im; cAb

� �b
 �
þ eTm

@F
@Tm

����
Tm¼ Tmh im ;cAb¼ cAbh ib

þ ~cAb
@F
@cAb

����
Tm¼ Tmh im ;cAb¼ cAbh ib

þ � � �
ð26Þ

Applying a similar expansion of Eq. (26), is valid express the reac-
tion rate, srxn, Eq. (3) in terms of deviations of temperature of the

catalytic solid, eTr and concentration of reactant A; ~cAb at the inter-
face conditions, and the average temperature and concentration,

Trh ir and cAb
� �b as follows

srxn ¼ A0e�E=R Trh ir cAb
� �b þ A0e�E=R Trh ir~cAb

þ eTr
E

R Trh ir� �2
 !

A0e�E=R Trh ir cAb
� �b þ � � � ð27Þ

An analogous expansion in terms of eT band Tb

� �b, leads to

srxn ¼ A0e�E=R Tbh ib cAb
� �b þ A0e�E=R Tbh ib~cAb

þ eT b
A0E

R Tb

� �b
 �2
0B@

1CAe�E=R Tbh ib cAb
� �b þ � � � ð28Þ

Equating the Eq. (27) and Eq. (28), and substituting the result in the
boundary condition at Abr of closure problem, Eq (23b), the expres-

sion for deviation eTr is write as

eTr ¼
E

R Tbh ib
� �2 e�E=R Tbh ib Trh ir � Tb

� �b
 �
� e�E=R Trh ir � e�E=R Tbh ib
 �

E

R Trh irð Þ2 e
�E=R Trh ir � E

R Tbh ib
� �2 e�E=R Tbh ib

�
e�E=R Trh ir � e�E=R Tbh ib
 �

E

R Trh irð Þ2 e
�E=R Trh ir � E

R Tbh ib
� �2 e�E=R Tbh ib

~cAb
cAb
� �b

ð29Þ
A similar expression can be carried out for the deviations of the

temperature eT b. However, the solid catalytic temperature is
selected considering that the average temperature of the solid is
intrinsically related to the surface reaction at Abr. The result of sub-
stituting the Eq. (29) into the Eq. (28) is the required expression for
chemical reaction rate, which only depends on concentration ~cAb
deviations and macroscopic average quantities, written as

srxn ¼ k Trh ir x1 cAb
� �b þx2~cAb


 �
ð30Þ

where k Trh ir is the average Arrhenius reaction rate coefficient writ-
ten in terms of the average temperature of the solid catalytic phase,
as follows
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k Trh ir ¼ A0e�E=R Trirh ð31Þ

x1 ¼ x2 þ
E

R Tbh ib
� �2 e�E=R Tbh ib Trh ir � Tb

� �b
 �
e�E=R Trh ir � Trh ir

Tbh ib
� �2

e�E=R Tbh ib|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼C1 Trh ir ; Tbh ib
� �

0BBBBB@

1CCCCCA

x2 ¼ 1� e�E=R Trh ir � e�E=R Tbh ib

e�E=R Trh ir � Trh ir
Tbh ib

� �2

e�E=R Tbh ib|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼C2 Trh ir ; Tbh ib
� �

0BBBBB@

1CCCCCA ð32Þ

The subscript Trh ir indicates the average temperature of the cat-
alytic solid is the reference temperature for the surface reaction
in the upscaling models. An exhaustive analysis of these expres-
sions is required to evaluate circumstances that the ratios present
in x1 and x2 definitions can be discarded. This could be done, on
basis of the use of macroscopic deviations, as is proposed in the
analysis of local thermal equilibrium in the passive (non-reaction)
heat transfer process in porous media (Whitaker, 1986; Quintard
et al., 1997; Whitaker, 1999; Quintard and Whitaker, 2000;
Aguilar-Madera et al., 2011). At this point, the non-linear contribu-
tion of the temperature deviations in the reaction rate has been
eliminated and can be expressed in macroscopic quantities. The
non-closure upscaling model for mass transport in the Eq. (12) is
complete by substitution in the surface integral term of the defini-
tion of srxn, Eq. (30), which can be expressed as

1
Vb

Z
Abr

srxndA ¼ k Trh irave�1
b x1 cAb

� �b þ x2

Abr

Z
Abr

~cAbdA

 !
ð33Þ

Moreover, in the non-closure upscaling model for heat transport,
Eq. (18) and Eq,(19), the surface integrals at Abr can be related by
the heat flux boundary condition, Eq. (5c) as

1
V

Z
Abr

nbr � kbrTbdA ¼ 1
V

Z
Abr

nbr � krrTrdAþ srxnHh i ð34Þ

where srxn Hh i, as will be shown in the next section, is defined
according to a first-order effective reaction rate. At this point, the
non-linear contributions of the deviation variables have been elim-
inated from the governing equations, and closure problems can be
solved. For brevity, the details related to statements and solutions
to the closure problems can be reviewed for mass and heat trans-
port in the Appendix B; here, we only present the formal solution as

~cAb ¼ fb � r cAb
� �b þ gb cAb

� �b ð35aÞeT b ¼ bbb � r Tb

� �b þ bbr � r Trh ir � sb Tb

� �b � Trh ir

 �

þ rbqrxn ð35bÞ
eTr ¼ brb � r Tb

� �bbrr � r Trh ir þ sr Trh ir � Tb

� �b
 �
þ rrqrxn ð35cÞ

The vector bb and scalar gb are the closure variables for mass trans-
port and the vectors bbb;bbr;brb;brr and scalars, sb; sr; rb and rr are
the corresponding closure variables for heat transport. Here
qrxn ¼ srxnHh i is the averaging heat source due to surface chemical
reaction.

Before moving to the next section, it is essential to emphasize
that the mathematical treatment present in this work to find the
appropriate reaction rate expression, in terms of average tempera-
tures and deviation concentration, was performed for a simple
first-order reaction and direct reaction kinetics. However, in the
catalytic intensified process, the reactive system inside the catalyst
layers involve multiphase, and multicomponent reversible reac-
tions and diverse kinetic sequences, as mentioned above. The
assumptions and restrictions on which the upscaled model is
8

derived in this section limit its applicability to this type of complex
system and are valid for analyzing liquid-phase reactions in the
catalytic porous medium of the reactive zone of intensified sys-
tems that meet these characteristics. Nevertheless,the strategy
approach presented here is a starting point that could be extended
to include these complexities, as mentioned above, to modeling
accurate, more realistic reactive regions in the intensified catalytic
process.
4. Upscaling model

In this section, we present the closed upscaling model that
describes the transfer of mass and heat transport in the porous cat-
alyst layer in the reactive region of the catalytic packing. The close
upscaling mass transport equation is obtained by substituting Eq.
(35a) into the surface integrals of Eq. 12, to give

eb
@ cAb
� �b
@t

þr � eb vb

� �b cAb
� �b
 �

¼ r � ebD�
b � r cAb

� �b
 �
� avk

�
eff cAb
� �b ð36Þ

which is expressed in terms of the total dispersionD�
b, and the effec-

tive reaction rate coefficient, k�eff , which are defined as

D�
b ¼ Db Iþ 1

Vb

Z
Abr

nbrfbdA

 !
� fb~vb

� �b ð37Þ

k�eff ¼ k Trh ir x1 þ x2

Abr

Z
Abr

gbdA

 !
ð38Þ

The total dispersion encompasses the diffusion and hydrodynamic
dispersion effects in the first and second terms.Here we use a super-
script � to indicate that they contain terms generated from convec-
tion, which is more evident for total dispersion; for the effective
reaction rate coefficient, and the convection comes from the associ-
ate closure problem (see B).The upscaled mass and heat transfer
equations are related by a macroscopic Arrhenius expression, Eq.
(38).As is written in the Eq.(31), k Trh ir depends by the imposition
that the average temperature of the catalytic solid Trh ir yields for
the first-order surface reaction.This form of expression is novel in
that it allows us to link the mass and heat transport equations by
defining the reaction rate with the average temperature of the solid
phase.As will be discussed later, the form of the upscaled heat
transport model also includes this definition of the effective reac-
tion coefficient.Otherwise, the values of the x1 and x2, as men-
tioned before and shown in their definitions, Eq.(32), depend on
complex relations of average temperatures; an order-of-
magnitude analysis could provide the significance of these relation-
ships.We can assume the complex relations can discard as follow-

ing: 1 � OC2 Trh ir; Tb

� �b
 �
and x2 � OC1 Trh ir; Tb

� �b
 �
as

consequence x2 	 1 and x1 	 1.The above results in the relation
between macroscopic mass and heat transfer given by the effective

reaction rate: k�eff ¼ k Trh ir 1þ 1
Abr

R
Abr

gbdA

 �

.In the case of isother-

mal case we can write k Trh ir ¼ k and the upscaling model for mass
transfer are in correspondence with those derived previously
(Valdés-Parada et al., 2011;Valdés-Parada et al., 2020).

At this stage, the closure of the upscaling mass transport model
is completed through the prediction of the effective coefficients. As
mentioned above, these coefficients are calculated using unit cells
representative of the catalytic porous medium. According to the
VAM, these unit cells can be as complex and capture the essential
microscopic characteristics of the reactive transport process. The
unit cells work as a representation of the catalytic porous medium,
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presented in the reactive zone in the catalytic column. They could
be used subsequently in design analysis to improve the structural
characteristics of the catalytic intensification process (Wang et al.,
2017). In the particular case of this work, the analysis of the unit
cell’s microstructure effects is convenient because the reaction
occurs on the surface of the particles. In the literature, various
geometries in 2D and 3D have been used to represent the structure
of porous media in mass and heat transport; which includes in-line
squares and cubes (Valdes-Parada and Alvarez-Ramirez, 2010;
Valdés-Parada et al., 2017), in line and staggered arrangements of
circles and spheres (Porter et al., 2010; Guo et al., 2015) and com-
plex structures of random circles and spheres (Yan and Li, 2017).

In this work, the computations of effective coefficients are per-
formed by the solution of the associated boundary-value problem
of the closure variable of fb and gb. The solution fields of the closure
variable depend upon microscopic properties, the heterogenous
reaction rate coefficient, and molecular diffusion. The asymmetric
behavior is due to the sources located on the interface of the cor-
responding closure problem; see B. We need to solve the momen-
tum transport equations (i.e. Navier Stokes equations) to obtain the
velocity field for the unit cells to include the convective contribu-
tion on the effective coefficients as detailed in B. The unit cells are
those employed previously to obtain the permeability coefficients:
circles (2D) and spheres (3D) obstacles, which represent the cat-
alytic pellet, see Fig. 1. To carry out the closure problem solution
and the subsequent calculation of effective coefficients, we use
the finite element solver COMSOL Multiphysics using the adaptive
mesh refinements to guarantee consistency and independence in
the numerical results. Examples of the numerical dimensionless
solution field of the closure variables are shown in Fig. 2 consider-
ing a longitudinal velocity (i.e., in the direction �x) across the unit
cell.

The result of predictions of the effective coefficients, D�
b and k�eff

are shown in Fig. 3 for variations of porosity of the catalytic packed,
the mass dispersion Péclet number and Thiele modulus, write as

PeD ¼ vb

� �b
‘c

Db
; u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k Trh ir‘c
Db

s
ð39Þ

where vb

� �b ¼ jj vb

� �bjj is the magnitude of the velocity. As trans-
port interpretation, these parameters characterize the flow pattern
and the reaction rate influence of the surface reaction on the effec-
tive coefficients, respectively. The Fig. 3 (a) shows the variation of
Fig. 2. (a) Solution profile of f x;b=‘c for periodic

9

the longitudinal dispersion coefficient, D�
b;xx, with the Thiele num-

ber, considering a low velocity pattern (i.e. PeD ¼ 10�3) in the cata-
lyst layer. It is observed that the effect of the chemical reaction
increases as the u number increases to similar values, independent
of the porosity and geometry of the unit cell, and when the Thiele
moduli become large (i.e. u > 10), the values of dispersion
D�

xx;b ! Db. These results are consistent with those previously
shown in the literature for analogous mass transport (Valdes-
Parada and Alvarez-Ramirez, 2010; Qiu et al., 2017). The results
clearly show the influence of the porosity and unit cell geometry
(i.e. dimension effect) on D�

b;xx=Db, to have a more quantitative per-
spective of this difference, we define the following expression the
percent of the difference of the effective dispersion coefficient as

%Difference ¼ D�
3D � D�

2D

�� ��
D

�

3D
� 100% ð40Þ

In general, as is shown in Fig. 3 (b), there are appreciable differences
between the calculated values of the dispersion coefficients using
2D and 3D unit cells, the magnitude of which these differences
increases with the decreases of the Thiele number and porosity,
reaching values of a maximum of 15% for eb ¼ 0:5. Therefore, it
can be stated that the effects of unit cell geometry of the packed
bed become important when the Thiele numbers become small
(i.e. uK10�3). Fig. 3 shows the effect of more complex situations
associated with the flow pattern in the unit cell model. In Fig. 3
(c) and (d) we plot the dependence of both, longitudinal and trans-
verse components of the dispersion coefficient with the Peclet num-
ber for values of the Thiele number with different orders of
magnitude (i.e. u ¼ 10�1;¼ 100;¼ 101) and fixed porosity
(eb ¼ 0:5). These coefficients feature the usual profiles of dispersion
coefficients, i.e. pure diffusion at low Peclet numbers PeD, a transi-
tion regime, and asymptotic dependence (
 PenD) for large Peclet.

The profiles of the longitudinal and transverse dispersion coef-
ficient show the same trend for the results of 2D and 3D unit cells
for the range of PeD values considered here. We notice in Fig. 3 (c)
that an increment in the Thiele modulus leads to a lightly increase
in the values of longitudinal dispersion tensor, which is more evi-
dent in the corresponding transverse component, Fig. 3 (d). In the
case of the dependence of the dispersion coefficient on the Peclet
number, the effect of the 2D and 3D unit cell geometry is particu-
larly noticeable for most of the PeD values, as is seen in Fig. 3 (e) -
(f). In general, the percentages are about 10% (u > 100) for
unit cell 2D y 3D. eb ¼ 0:5 and PeD ¼ 101.



Fig. 3. (a) Effect of the porosity in the longitudinal dispersion coefficient as functions of Thiele moduli with PeD ¼ 10�1. (b) Percentage difference between 2D and 3D unit
cells in the longitudinal dispersion coefficient. (c) Longitudinal and (d) transverse dispersion coefficients as functions of the particle Péclet number, PeD and Thiele moduli.
Percentage difference with the variations of Thiele moduli of the (e) longitudinal and (f) transverse dispersion coefficient. The porosity is eb ¼ 0:5.
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PeD < 100 reaching higher percentages for larger values of the Pec-
let number (PeD ¼ 102). The erratic behavior shown in the percent-
age differences between the values PeD ¼ 100 � 102 can be
attributed to the transition from diffusive to convective effects in
the respective unit cells (Valdés-Parada et al., 2017).

In the proposed mass transport upscaling model, the influence
of the surface reaction that occurs in the catalytic bed of the reac-
tive zone can be characterized through predictions of the effective
reaction rate coefficient, k�eff . As indicated by its definition, Eq. (38),
this coefficient links the chemical kinetics via the Arrhenius-type
expression and the surface integral of the closure variables, which
we can consider as an upscaling correction. The predictions of the
effective rate coefficient, dependent on the Thiele number for var-
10
ious values of the Péclet numbers and fixed porosity of eb ¼ 0:5, are

shown in Fig. 4 using 2D unit cells. As expected, for u < 100, the
effective reaction rate coefficient k�eff ! k Trh ir and the values of
the reaction rate coefficient decreases as u increases with the
influence of the magnitude of the convection, PeD > 101. If the ratio
k�eff =k Trh ir is defined as an effectiveness factor g (Wood et al., 2007),
it would correspond only to the surface integral of the closure vari-
ables associated with the source of the surface chemical reaction,
Eq. (38). Thus there is a relationship between a reaction parameter
at the catalytic bed scale with one associated with the reaction at
the surface of the catalytic particle; analogous to the classical
interpretation of intrinsic velocity reaction (Chemical Reactor
Analysis and Design, 2010). The above could therefore involve



Fig. 4. (a) Dependence of the effective reaction coefficient with u and PeD . (b) Dependence of the normalized effective reaction with the Thiele module with u using 2D unit
cell. (c) Comparison of the effective reaction coefficient using 2D and 3D unit cells. (d) Percentage difference 2D and 3D of effective rate coefficient. The porosity is eb ¼ 0:5.
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the predictive ability of an effectiveness factor in dependence on
u; PeD, and the geometry of the unit cell. In addition, we can rein-
terpret this relationship as a scaling factor that considers the sur-
face kinetic conditions involving the convective transport of mass
in catalytic porous media. We notice that the effective rate coeffi-
cient is not the same as the kinetic constant for the heterogeneous
reaction set out in this work, but it is a function of a semi-local
Thiele modulus due k Trh ir is defined by the averaging temperature
of the solid phase. In Fig. 4 (b), we plot the normalized effective
reaction rate coefficient with the u and PeD to visualize the effect
of the velocity flow and the heterogeneous reaction for a 2D unit
cell with the Péclet number, values are ranging in four magnitude
orders. We observe that the effect of the dispersion transport in
reasons for the effective rate coefficient is not the same as the
kinetic constant for the heterogeneous surface reaction, but it is a
function of the local Thiele modulus in the catalytic bed.

To finalize with mass transport coefficients associated with the
upscaling model development in this work and to point out the
effect of the unit cell geometry on the effective reaction coefficient,
in Fig. 4(c), we examine the dependence of the rate coefficient fac-
tor with various values of PeD for several values of u with differ-
ences in magnitude order. More evident in these results is the
effect of the chemical reaction on the effective reaction coefficient
where k�eff decreases as the u decreases, with appreciable differ-
ences given the unit cell used in the calculation of the predictions.
To gain further insight into the influence of the representative cell
geometry of the catalytic bed, Fig. 4 (d) shows the percentage
differences between the predicted values of the k�eff ;2D and k�eff ;3D
coefficients, analogous to Eq. (40). These results show that the per-
centage error increases with increasing magnitude of u, remaining
11
relatively the same value for PeD < 1 at a value less than 17%,
increasing to a maximum of 35% in the range of PeD ¼ 100 � 102,
to become practically independent of the unit cell geometry at val-
ues of PeD > 103. This rapid increase can be explained by the fact
that the transition from diffusive to convective process, influenced
by the surface reaction, occurs at these values of Péclet. It is worth
pointing out that the predictions, in the values of PeD, cover only
the non-inertial range in the simulations for the catalytic bed in
both 2D and 3D unit cells, on these inertial effects may be a signif-
icant increase in the effective rate coefficient for first-order hetero-
geneous reaction in the catalytic bed and this motives further
study.

To complement the upscaling model for the catalytic packed is
necessary to derive the corresponding macroscopic equations of
heat transfer in the fluid and solid particle and predict the associ-
ated effective coefficients. We derive the macroscopic equation for
heat transfer by the substitution of Eqs. (35) (b) - (c) into Eqs. 13,14
to obtain the following govern equations for fluid phase and the
catalytic solid, respectively

eb qcp
� �

b

@ Tb

� �b
@t

þ qcp
� �

b
r � vb

� �b Tb

� �b
 �
¼ qcp
� �

b
r � u�

bb Tb

� �b þ u�
br Trh ir

h i
þr

� K�
bbr � Tb

� �b þK�
brr � Trh ir

h i
� avh Tb

� �b � Trh ir

 �

� nb qrxnh i ð41Þ
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er qcp
� �

r
@ Trh ir
@t

¼ qcp
� �

b
r � urb Tb

� �b þ urr Trh ir
h i

þr

� Krbr � Tb

� �b þKrrr � Trh ir
h i
� avh Trh ir � Tb

� �b
 �
þ nr qrxnh i ð42Þ

These expressions agree with previous formulations for dispersive
heat transport for the two-equation model for heat transfer
(Ochoa-Tapia and Whitaker, 1997; Quintard et al., 1997; Quintard
and Whitaker, 2000). The presence of a heat source due to the sur-
face reaction on the catalytic particle means that Eqs. 41,42 involve
the additional last terms, which allows us to relate it to the macro-
scopic mass transport equation (Ea. 36), previously derived. These
equations include several effective heat transfer coefficients defined
in terms of the closure variables associated with the temperature.
The effective coefficient includes the heat dispersion tensors, for
example the K�

bb and Krr are written as

K�
bb ¼ kb ebIþ 1

V

Z
Abr

nbrbbbdA

 !
� qcp
� �

b
~vbbbb

� � ð43Þ

Krr ¼ kr erIþ 1
V

Z
Arb

nrbbrrdA

 !
ð44Þ

Similar expressions can be written for the other dispersion coeffi-
cients for the rest of the effective coefficients, as presented in B.
In the case of the heat transport equation for the fluid, the terms
with u�

b;m;m ¼ b;r represent a velocity vector which results from
the conduction and dispersion in the fluid; whereas the alike-

convective terms qcp
� �

b
r � u�

bm Tmh im
h i

arising from the interactions

fluid–solid phases and avh is the interfacial heat transport. As we
can notice, analogous effective coefficients are present in the Eq.
(42) for the solid phase equation, remarking that we have used �
superscript to distinguish the effective coefficients that contain
terms generated by convection. In addition, the presence of
convective-like coefficients in the Eq. (42), despite evidence that
no heat convection transport in the solid phase, is attributed to
the interaction between transport and effective conduction at the
pore-level (Quintard et al., 1997). Finally, the terms attributed to
the average surface source due to the reaction are defined in terms
of the effective reaction rate coefficient and the average concentra-
tion according to

qrxnh i ¼ k�eff cAb
� �b � H ð45Þ

This term in the macroscopic equations of heat transport con-
trasts with the previous works (Quintard et al., 1997; Quintard
and Whitaker, 2000; Yang et al., 2015a), in which the non-
linear contributions of the deviation quantities were not dis-
carded explicitly from the macroscopic heat transport equation.
As matter of fact, the definition of qrxnh i given in the Eq. (45)
indicate clearly the relation with the effective reaction rate coef-

ficient, k�eff , the macroscopic concentration, cAb
� �b, and the heat

reaction, H; this corresponds to the original contributions of this
work. As previously discussed, k�eff is calculated from the solution
of the transport closure problem for mass and the corresponding
value k Trh ir . Therefore, the non-linear relation of the Arrhenius-
type Equation, Eq. (40) generates both upscaled models for mass
and heat transport related to each other. In addition, the effective
coefficient that multiplies this term, nb and nr, can interpret as
the volume distribution coefficients for heat produced due to
the reaction in the interface between the catalytic solid and fluid
phase. They are defined as
12
nb ¼
kb
Abr

Z
Abr

nbr � rrbdA; nr

¼ kr
Abr

Z
Arb

nrb � rrrdA; nb þ nr ¼ 1 ð46Þ

Thus, the upscaling model for heat transfer is completed by calcu-
lating the effective coefficients obtained under the same solution
scheme presented previously for mass transport. These predictions
consist of the solution profiles of the closure problems in 2D and 3D
unit cells under different velocity rates and their subsequent substi-
tution in the explicit definitions of these coefficients. Examples of
the solution profiles are presented in B. These predictions are made
for various values of thermal Péclet number and conductivity ratios,

PeT ¼ qcp
� �

b

vb

� �b
‘c

kb
; j ¼ kb=kr ð47Þ

The results of the longitudinal and transversal component of the
thermal dispersion coefficient of b-phase, K�

xx;bb and K�
yy;bb, is shown

in Fig. 5 (a) and (b) as a function of Peclet number and for different
porosity and dimension. The effective coefficients exhibit similar
profiles to those shown previously for mass dispersion, Fig. 3 (c)
and (d), and as expected, the values of the transverse component
are much smaller than the longitudinal. Indeed, these figures show
qualitative differences in the values of the thermal dispersion coef-
ficients that depend on the geometry of the unit cell, which
decreases with increasing porosity. This influence is evident by ana-
lyzing the percentage difference of these values of longitudinal and
transverse dispersion shown in Fig. 5 (c) and (d), respectively. It is
observed that the percentage difference for the longitudinal compo-
nent does not exceed 10% for PeT < 100, increasing rapidly to values
greater than 100% for PeT > 102. For the transverse component, the
differences are less than 10 %. As in the case of mass transfer, the
influence of the unit cell model representative of the catalytic bed
should be considered in the predictions of the effective coefficients,
mainly for large PeT . The other thermal coefficients component are
presented in Fig. 5 (e) and (f), and similar comments can be drawn.
These results indicate values of Kxx;rr are smaller than the b - phase
and present an opposite profile concerning the dependence on
porosity. On the other hand, Fig. 5 shows that the coupling tensors
K�

xx;br and Kxx;rb, for range values of PeT , are very small compared to
the principal coefficients K�

xx;bb and Kxx;rr.
To analyze the dependence of the effective coefficients on the

characteristic thermal conductivities ratio, the dependence of ther-
mal coefficients as a function of j for various order magnitudes of
PeT is presented in Fig. 6 by fixing eb ¼ 0:5. In general, the influence
on the effective thermal coefficients with velocity can be consid-
ered negligible for PeT < 100 for the whole range of j, turning rel-
ative relevant for large values of the Péclet number. The Fig. 6 (a)
shows the influence of j in the K�

xx;bb is important in the range of

10�1 < j < 101, outside these values we observe j does not affect
greatly and approaches a constant values. These profiles show that
the value of K�

xx;bb increases for PeT 6 100 and oppositely for

PeT > 100, denoting the influence of the velocity rate on this coef-
ficient. In the case of the coefficient for the solid phase, K�

xx;rr, their
value increases in an asymptotic trend towards a constant value
slightly influenced by the PeT . The functionality of volume interfa-
cial heat transfer, avh, with the ratio conductivities, is shown in
Fig. 6 (c). The profiles shown by this interfacial coefficient are sim-
ilar to those described previously, with magnitudes of the coeffi-
cient values much larger than those corresponding to K�

xx;rr. The

no dependency shown in Fig. 6 (c) with PeT , between j < 100 of



Fig. 5. (a) Longitudinal and (b) transverse thermal dispersion coefficient for fluid phase. (c) and (d) are Percentage difference using 2D and 3D unit cells. (f) and (g) are
Longitudinal co-dispersion coefficient for phases interactions.
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avh, is attributed to the dominance of heat resistance of the cat-
alytic solid. With respect to the coefficients associated with the
convective-like term, u�

x;b;m and, ux;r;m;m ¼ r; b to keep the docu-
ment brief, these results are shown in B. It is pointed out that, like
the results shown here, the values present a clear dependence in
their magnitude with the velocity rate as a function of the geome-
try of the 2D and 3D unit cells used for their calculation. In general,
these coefficients’ result is consistent with the previous observa-
tions for similar 2D unit cells (Quintard et al., 1997).

Finally, we focus on the predictions of the effective coefficients
associated with the heat source term due to the surface chemical
reaction. For a stratified system, analytical expressions for the pre-
dictions of these effective coefficients can be found in the literature
(Quintard and Whitaker, 2000). In this study, we extend the
13
predictions of these coefficients computed for unit cells of the cat-
alyst particle in 2D and 3D with the novelty of analyzing the appli-
cations of the upscaling model in the catalyst layer with equal
structural particles. The volume distribution coefficient nb and nr
as a function of thermal conductivity are plot in Fig. 8 (d). The
results show that for low values of j, i.e j! 0, the process the heat
distribution reaction source is in the fluid phase, and nb 	 1. In
opposition, when the fluid phase does not dominate the heat trans-
fer, large values of j, the heat source of the reaction distribution is
in the catalytic solid, and nr 	 1.

Furthermore, it is observed that the influence of j on the value
of the distribution coefficients is more significant in the interval of
10�1 < j < 101, increasing its value as PeT increases. Additional
results, not presented here for brevity, show that a decrease in



Fig. 6. (a) longitudinal thermal dispersion coefficient, (b) transverse thermal dispersion coefficient, j, (c) volume reaction heat distribution coefficient, as a function of the
thermal Péclet, PeT , for eb ¼ 0:5.
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eb, an increase in the surface area available to the reaction source,
increases nb in the range around j ¼ 1 with an increase; with the
opposite behavior for nr. Moreover, the influence of velocity is
more noticeable with decreasing porosity. Similar profiles are
observed between 2D and 3D unit cells, where percentages of dif-
ference of up to 30% are presented, significantly influencing the
value of the reaction volume distribution coefficient.

The relevance of computing the effective coefficients associated
with mass and heat transfer are: firstly, these coefficients allow for
the determination of the averaged concentration and temperature
profiles at the scale of the catalyst layer, and secondly, the influ-
ence of mass and heat transport with surface reaction in the micro
and macroscale description of transport on the catalyst packing.
The above is based on the analysis of the appropriate microstruc-
tures of the catalyst layer, as is suggested in the multi-scale anal-
ysis of the catalytic packing process (Wang et al., 2017). In the
next section, the concentration and temperature profile models
have compared with the pore-scale numerical simulations to eval-
uate the macroscopic models developed in the previous sections.
5. Comparison of the macroscopic model with microscopic pore
scale calculations

To evaluate the accuracy of the upscaling model’s development
in this work, in this section, we compare the averaged concentra-
tion and temperature profiles with numerical simulations carried
out at the micro-scale (Direct Pore-Scale simulations, DPS) over a
microscopic geometry of the catalytic packing. The comparison
14
with the DPS allows us to analyze the validity of the scaling laws
used to describe the reaction process through the macroscopic
equations of mass and heat obtained (Wood and Valdés-Parada,
2013). On the other hand, it allows us to consider that the model
can be used to describe satisfactorily the reaction process that
takes place in the catalyst particles packed. The microstructure
model of the catalyst layer is made of the square pattern of parallel
cylinders (2D) for the sake of consistency with the unit cell used in
the closure problems for effective coefficient predictions. The sim-
ulation domain consists of a horizontal array in the flow direction
(x-direction) made up of unit cells of dimensions ‘c � ‘c , whose
total length is L ¼ N � ‘, where N is the total number of unit cells,
as sketched in Fig. 7. In general, the size of L should be selected as
long as the constraint ‘c � r0 � L, at a minimum length that guar-
antees one order of magnitude of separation between the charac-
teristic lengths. For the numerical simulations, the microscopic,
given by Eq*s. (4)–(5) and microscopic mass, Eq. (41)–(42) and
heat equations are subject to the following initial and boundary
conditions for the solution domain,

at x ¼ 0; cA ¼ cAb
� �b ¼ cin; Tb ¼ Tb

� �b ¼ Tin ð48aÞ

at x ¼ L;
@cA
@x

¼ 0;
@ cAb
� �b
@x

¼ 0;
@Tb

@x
¼ 0;

@ Tb

� �
@x

¼ 0; ð48bÞ

when t ¼ 0 cA ¼ cAb
� �b

; Tm ¼ Tmh im ¼ T0; m ¼ b;rð Þ ð48cÞ

Additionally, periodic boundary conditions were imposed at the
upper and lower boundaries of the array of unit cells. The velocity
field is obtained from solving the Navier–Stokes equations in the



Fig. 7. (a) Simulation domain for the 2D system used to perform the pore-scale numerical simulations. (b) Dimensionless concentration DPS solution field for first unit cells of
the domain, (c) dimensionless temperature DPS solution field for first unit cells of the domain, (d) dimensionless temperature DPS solution contour for first unit cells of the
domain. The length of the porous medium is chosen to be maximum L ¼ 100‘ and eb ¼ 0:5.

O.A. Luévano-Rivas, J.J. Quiroz-Ramirez, V.A. Suarez-Toriello et al. Chemical Engineering Science 265 (2023) 118206
microscopic model subject to a pressure drop relative to the mass
Péclet number, PeD. The thermal properties of the liquid and cat-
alytic phases and the transport properties used in the numerical
simulations are presented in Table 1. This Table also includes the
parameters associated with the surface chemical reaction. The char-
acterization of the surface chemical reaction is evaluated using the
Thiele modulus that for the microscopic and macroscopic are
defined based on the Tin (Eqs. (31) and (39). We assume that it var-
ies according to the coefficient A0. The effective properties in the
upscale model are determined considering the properties of Table 1
and solving the closure problems, as shown in the previous section.
The macroscopic equations are solved in a 1D domain with the
same length, L, as the microscopic system and subject to the iden-
tical boundary conditions of DPS, Eq. (48c).
5.1. Results and Discussion

The micro and macroscale model is solved by using COMSOL
Multiphysics. The independence of the number of computational
elements in the numerical results is guaranteed by involving adap-
tive mesh refinements algorithms. Examples of the solution field of
pore scale temperature and concentration are shown in Fig. 7. The
average concentration and temperature profiles in both fluid and
catalytic phases, of the upscaled model and DPS, for variations of
the Péclet, porosity, and Thiele moduli, are shown in Fig. 6.In these
figures, the results normalize with cin for average concentration
and the temperature difference with

D Th i ¼ max Tb

� �b � Tmh imi ; i ¼ DPS;VAM, for average temperatures.
In general, in all the profiles shown, the predictions of the upscaled
model show good agreement with those obtained via the DPS. The
concentration propagates over a greater distance in the catalyst
layer due to the increase in velocity rate; see Fig. 6 (a). In the case
Table 1
Properties of solid catalyst and fluid.

r-phase

q 2100
cpm 800
km 1

Reaction par
H 391.9 kJ/mol

E
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of the temperature profile, this increase in concentration is
reflected, in the input system, as an increasing value of the temper-
ature difference associated with the solid phase, see Fig. 6 (b).
These profiles show that in the macroscopic model, the reaction
source is associated with the surface temperature of the catalytic
solid, Trh ir. On the other hand, at small values of the Péclet num-
ber and a sufficiently large distance, the differences between the
catalytic solid and the fluid phase temperatures are small enough
to be considered the case of local thermal equilibrium. The above
is a reminiscent assumption for thermal analysis in porous media
such as the catalyst layer.

To analyze the viability of the upscaled model to structural vari-
ations of the catalytic packing representation, Fig. 6 (c) and (d)
show the temperature and concentration profiles considering vari-
ations in the porosity of the unit cell. The results present the same
characteristics described previously; however, in this figure, it can
be observed that the concentration and temperature profiles are
less influenced by the porosity, being those of larger magnitude
corresponding to the lowest porosity. This is reflected by the
higher temperature difference obtained at eb ¼ 0:3; see Fig. 6 (d).
It is attributed to the larger surface area between the fluid and cat-
alytic phases corresponding to this porosity and their dependency,
which are associated with the effective coefficients defined in sur-
face integrals.

For variations of the Thiele moduli, u, that characterize the sur-
face reaction, it can be seen in Fig. 6 (e) that the concentration pro-
files are practically independent with this parameter for a fixed
value for PeD and porosity. On the other hand, appreciable differ-
ences between the temperatures of the fluid phase and the cat-
alytic solid are observed in Fig. 6 (f), which shows that the
profile predictions are more sensitive to this parameter. The largest
differences are present for e ¼ 100, and the upscaling model under-
b-phase

0.3 kg/m3

1200 J/kgK
0.025 W/mK

ameter
Db 2�10�8 m/s2

8314 J/mol



Fig. 8. Comparison of average concentration and temperature resulting from the upscaled model (VAM) and the DPS: (a)-(b) Péclet variations for eb ¼ 0:5, (c)-(d) Porosity
variation for u ¼ 1 and PeD ¼ 101 and (e)-(f) Thiele moduli variations for eb ¼ 0:5 and PeD ¼ 102.
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predicts the temperature profiles. This agrees with the values of k�eff
performed previously, see Fig. 4 (c). It is important to remember
that the reaction coefficient relates to estimates of the temperature
deviations required in the upscaling process. Neglecting the higher
orders in Eqs. (27) and (29) for small Thiele values could increase
errors in the predictions of the effective reaction coefficient; this
could explain the observed differences between the upscaled
model and the DPS. This behavior is also observed for large Péclet
numbers and low porosities; see Fig. 8 (b) and (d), respectively.
Although the discrepancies are relatively moderate, the macro-
16
scopic model predicts a similar trend to DPS in temperature values
and profile shape.

Concerning the comparisons between the microscopic
model and the upscaled model obtained for the PeD number,
porosity, and u variations, we can summarize the following
comments:

� The concentration profile is adequately predicted with the
upscaled model for the cases presented here. Generally, the per-
centage error concerning the microscopic model is less than 5%.
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� In the case of the fluid and solid catalytic temperatures, the pro-
files of upscaled and microscopic models match well. The most
significant errors are visible in the solid temperature. Mainly for
the extreme parameters used to analyze the scaled model,i.e.
large Péclet, low porosities, and small Thiele. These suggest that
the effect of surface reaction and temperature deviations is
associated with the effective reaction coefficient. Considering
the conditions for which the temperature differences are appre-
ciable, the possibility of a local thermal equilibrium model is
discarded.

� The comparison of the upscaled and DPS models predictions
shows, in general, a similar trend, demonstrating the viability
of the macroscopic model obtained in terms of effective
coefficients

The results show that using unit cells representative of the cat-
alytic packing allows associating a selection scheme of suitable
geometries in calculating effective coefficients. It allows us to com-
pute the temperature and concentration profiles of the catalyst lay-
ers, including their geometric structure, in the reactive catalytic
layers of the reactive column packing. Predicting the effective coef-
ficients through the solution of the closure problems is essential in
the approach proposed in this work. As mentioned in the introduc-
tion, CFD tools can be used to rigorously analyze mass-heat trans-
fer processes with chemical reactions within catalytic layers.
However, in the case of computational costs, these tools can be
prohibitive, and the upscaled models developed in this work can
be used to adequately predict the average temperature and con-
centration profiles without requiring simulation on the complex
microstructure of the catalytic porous medium of the catalytic lay-
ers. Hence, the upscaled model and effective ancillary coefficients
could be used as novelty surrogate input data for rigorous simula-
tion processes of the reactive catalytic columns with intensifica-
tion purpose.
6. Conclusions

This work analyzes the problem of mass and heat transport
with surface chemical reaction in the catalytic porous medium in
the reactive packing catalytic with an upscaling approach. A first-
order reaction rate with an Arrhenius-type was considered. The
governing equations at the pore-scale were upscaled using the vol-
ume averaging theory to obtain average equations expressed in
terms of effective mass and heat dispersion coefficients and reac-
tion and volume heat distribution. The surface reaction term at
the microscopic scale, which relates to the pore-scale mass and
heat balance, was analyzed using a multivariate Taylor series
expansion. The effective coefficients associated with the upscaled
model were predicted based on the solution of the closure prob-
lems in 2D and 3D periodic representations of the catalytic pack-
ing. In the case of the mass upscaled model, the effective
dispersion coefficients depend essentially on the microscopic reac-
tion velocity, categorized by the Thiele modulus, and influenced by
the velocity rate (i.e. the Péclet number). For the energy model, the
effective coefficients are essentially influenced by the thermal
properties of the phases and the velocity rate. The predictions of
the thermal dispersion coefficients are consistent with previous
work without chemical reactions. The volume heat distribution
coefficient, associated with the surface source of reaction, is inde-
pendent when the heat transfer is dominated by one of the phases
and influenced by the velocity rate when there is competition
between solid catalytic and fluid phase conductivity.

The particular dependence of the effective coefficients is dic-
tated, in general, by the corresponding geometry of the unit cell.
The predictive capabilities of the upscaled model are confirmed
17
through a reasonable comparison of the average concentration
and temperature profiles of the upscaled equations and the micro-
scopic simulations. Noticeable differences in some of the tempera-
ture profiles of the catalytic solid can be attributed to the effect of
the chemical reaction on the surface temperatures. A likely correc-
tion involves analyzing the linearization method of the Arrhenius-
type surface reaction and its particular dependence on tempera-
ture deviations at the interface in the treatment of surface heat
sources.

It should be emphasized that the representative region of the
microstructure of the catalytic porous media used in this work is
limited to simple geometries. However, the unit cell concept con-
siders more complicated models that include geometric features
of the catalytic packing. On the other hand, the results of the sim-
ulations show the feasibility of using upscaled models, which
incorporate the catalytic packing structure in the effective coeffi-
cients; within macroscopic simulation schemes without requiring
complex pore-scale simulations of the dispersive reaction process
proposed in the CFD methods. With this idea in mind, one could
propose the use of upscaled models to analyze more complex pro-
cess simulations involving the optimization and intensification of
catalytic structures attached to macroscopic reactive separation
intensification processes. It will require the development of mod-
els, under this upscaling approach, to represent the multicompo-
nent and multiphase transport with reversible reactions
considering the suitable condition for separation.
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Appendix A. Closure problem for momentum transport

As is mentioned in the main text, the upscaling model for a
single-phase flow is given by the Darcy-Forchheimer equation,
Eq. (10), (Whitaker, 1996; Lasseux et al., 2011),

vb

� � ¼ �Hb

lb

� r pb

� �b � qbg

 �

ðA:1Þ

where the apparent Permeability, H�1
b , related both the intrinsic

Permeability, Kb, and the Forchheimer correction, Fb, as

H�1
b ¼ K�1

b � Iþ Fb

� � ðA:2Þ
The upscaling model in the Eq. A.1, inherently involves the follow-
ing length-scale and steady flow constraints: ‘b � r0 � L and
lbt

�

qb‘
2
b

� 1 or qb

vbh ib‘b
lb

‘b=L
� �� 1, which is according to the constraints

used in this work. The tensor Hb can be determined from the solu-
tion over the unit cell of the periodic structure (period lk; k ¼ 1;2;3)
of the following closure problem

Problem : i ¼ 0; Source : 0 ¼ r vb

� �b
;

r � Eb ¼ 0; inVb

ðA:3aÞ
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qbvb

lb

 !
� rEb ¼ �reb þr2Eb þ IinVb ðA:3bÞ

Eb ¼ 0; atAbr ðA:3cÞ
Eb r þ lkð Þ ¼ E rð Þ; k ¼ 1;2;3 ðA:3dÞ
eb r þ lkð Þ ¼ eb rð Þ; k ¼ 1;2;3 ðA:3eÞ
eb
� �b ¼ 0 ðA:3fÞ
Eb

� � ¼ Hb ðA:3gÞ
As is given in (Lasseux et al., 2011), for low Reynolds number,
ReK10, where is defined as Re ¼ qbv ref ‘c=lb and v ref is a reference

velocity related with r pb

� �b, the term qbvb

lb


 �
� rEb in the Eq. A.3b

can be neglected. The latter results to Hb ¼ Kb. In this work, the clo-
sure problem is solved in the representation geometry of the cata-
lyst layer that consists of in-line cylinders (2D) and spheres (3D)
unit cells (sketched in Fig. ??). The computation of the closure prob-
lem is performed using commercial finite element solvers involving
adaptive mesh refinements to ensure that the results are indepen-
dent of the number of elements. From the closure problem solution
field, the values of the longitudinal intrinsic permeability Kb;xx is
computed using the expression in Eq. (A.3g), the predictions are
presented in Fig. A.1 for the porosity variations. The results can fit
successfully to the expressions given in the Eq. (11b) (R2 ¼ 0:999).

Appendix B. Closure problems

In this section, we present the details concerning in develop-
ment of the formal solution to the closure problem associated with
the upscaling model that describes the mass and heat transfer
involving the reaction in the catalytic solid surface.

B.1. Mass transport

In the case of mass balance, from the main work, we summarize
the boundary-value problem for the concentration deviation ~cAb
indicating explicitly the source terms, as

~vb �r cAb
� �b|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}Convectivesourceþvb �r~cAb ¼r� rDb~cAb

� �
þk Trh irx1av cAb

� �be�1
b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Volumereactivesourceþ

k Trh irx2

Vb

Z
Abr

~cAbdA inVb

ðB:1aÞ
Fig. A.1. (a) Unit cell representative of a catalytic bed (b) Intrinsic
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�nbr �Dbr~cAb ¼�nbr �Dbr cAb
� �b|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}Diffusivesource

þk Trh irx1 cAb
� �b|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}Surfacereactivesource

þk Trh irx2~cAbatAbr

ðB:1bÞ

Periodicity : ~cAb rð Þ¼ ~cAb rþ lið Þ; i¼1;2;3 ðB:1cÞ
Restritcion : ~cAb

� �b ¼0 ðB:1dÞ
The fluid velocity field, vb and its deviations, in the Eq. (B.1a), can be
determined as a first instance from the solution of the Navier-
Stokes equation. An alternative formulation suggests that the veloc-
ity field can be replaced by the average velocity defined in Eq. (A.1).
Therefore, in the framework of volume averaging, it is possible to
rewrite the closure problem only in terms of only closure variables
(Valdés-Parada et al., 2017). The concentration deviations result
from the convective effects, diffusive and reactive (superficial and
volume) sources. In this case, the reactive source is associated with
the reaction rate defined as Trh ir. The formal solution to the bound-
ary problem can be carried out based on the linear nature of the clo-
sure problem; the solution can be proposed in terms of the sources
using superposition. However, as is indicated in previous works, the
solution can be formulated formally using integrals equations based
on Green’s transformation functions(Valdés-Parada et al., 2011;
Wood and Valdés-Parada, 2013). The result is expressed as

~cAb ¼ f b � r cAb
� �b þ gb cAb

� �b ðB:2Þ
where f b and gb are being the so-called closure variables. The solu-
tion of the closure variable is obtained by solving the corresponding
boundary-value problems, which result from subsisting Eq. (B.2)
into Eqs. B.1a,B.1c,B.1d. The respective closure boundary-value
problems are summarized as follows,

Problem : i ¼ 1;2 Source : 1 ¼ r cAb
� �b

;2 ¼ cAb
� �b

vb � r/i ¼ r � Dbr/i

� �� f i
ðB:3aÞ

�nbr �Dbr/b ¼ gI
i þ gII

i atAbr ðB:3bÞ
Periodicity : /b rð Þ ¼ /b r þ lkð Þ; k ¼ 1;2;3 ðB:3cÞ
Restriction : /b

� �b ¼ 0 ðB:3dÞ
where /i (i ¼ 1;2) represents the vectorial and scalar closure fields
defined as /1 ¼ f b and /2 ¼ gb. In addition, we introduce the vol-
ume and surface sources and integral terms using the expressions,
permeability as function of porosity for 2D and 3D unit cells.
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f i ¼ di1~v � di2k Trh irx1ave�1
b � k Trh irx2

Vb

Z
Abr

/idAðB:4aÞ

gI
i ¼ di1nbrDb;ðB:4bÞ

gII
i ¼ di1k Trh irx2/i þ d2ik Trh ir x1 þx2/ið ÞðB:4cÞ

If we carry out an order magnitude analysis, the fields of both the
closure variables depend on the reaction rate coefficient k Trh ir Eqs.
(B.3a)–(B.3d), we have

f b ¼ O
‘b

1þu2

� �
; gb ¼ O

u2

1þu2

� �
ðB:5Þ

where u represents Thiele’s modulus, defined as u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k Tr ir ‘b

Db

Dr
.

Here we assume x1 and x2 ¼ O 1ð Þ. We can consider that the clo-
sure problems associated with mass transport are independent of
the local quantities and constant on the microscopic scale. The algo-
rithm to compute the effective coefficient consists at first of solving
the Navier–Stokes, Eqs. (1a)–(1c), imposing a gradient pressure in
the longitudinal direction in the unit cell of the catalytic bed of cir-
cle (2D) and sphere (3D) obstacles, A.1 (a). The determination of the
velocity field is used as input for solving the closure problem using
the finite element solver; examples of the closure variable fields are
shown in Fig. B.1. Finally, the results of variable closure fields are
substituted in Eqs. (37) and (38) to compute the effective coeffi-
cients presented in the main text.

B.2. Heat transport

Following the closure problem for the heat transport macro-
scopic model, the governing equation and the boundary conditions
for the temperature deviations are expressed as
Fig. B.1. Fields of closure variables for f bx and gbx in the direction of the fluid flow component for eb ¼ 0:5 and u ¼ 1.
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qcp
� �

b
vb � reT b þ qcp

� �
b
~vb � r Tb

� �b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}convectivesource
¼ r � kbreT b


 �
� e�1

b kb
V

Z
Abr

nbr � reT bdA; enVb ðB:6aÞ

0 ¼ r � krreTr


 �
� e�1

r kr
V

Z
Arb

nrb � reTrdA; enVr ðB:6bÞ

eT b ¼ eTr þ Trh ir � Tb

� �b
 �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}Interfacialsource; enAbr ðB:6cÞ

� nbr � kbreT b ¼ �nbr � krreTr

þ nbr � kbr Tb

� �b � nbr � krr Trh ir|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Conductivesource ðB:6dÞ

þ srxnH|ffl{zffl}¼qrxn ;ReactivesourceenAbr ðB:6eÞ

Periodicity : eT a rð Þ ¼ eT a r þ lð Þ;a ¼ b;r; i ¼ 1;2;3 ðB:6fÞ
Restriction : eT a

D Ea
¼ 0;a ¼ b;r ðB:6gÞ

The periodicity conditions in this boundary-value problem, Eq.
(B.6f), replace external boundary conditions of the system. We are
not interested in solving this equations system in the macroscopic
system. A representative periodic unit cell of the microscale of the
catalytic system provides an accurate representation of the external
boundary conditions to solve the closure problem. The restriction of
the intrinsic average of the deviations is zero, Ec. B.6g (and Ec. B.1d),
for mass closure problem), is consequence from the separations of
length-scales separation assumption (Eq. 6). According to (Wood
and Valdés-Parada, 2013), these results arise from the upscale pos-
tulates. The formal solution of the boundary-value problem for the



Fig. B.2. Fields of closure variables for bjrx; bjrx; sj; tj ; j ¼ b;r for eb ¼ 0:5 and j ¼ 1.
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temperature deviations can be derived using integral Green’s trans-
formations. However, as is indicated in the previous closure prob-
lem, the linear nature of the boundary value, it is plausible to
propose a solution in terms of the indicating sources as follows,

eT b ¼ bbb � r Tb

� �b þ bbr � r Trh ir � sb Tb

� �b � Trh ir

 �

þ rb qrxnð Þ ðB:7aÞ
eTr ¼ brb � r Tb

� �b þ brr � r Trh ir þ sb Trh ir � Tb

� �b
 �
þ rr qrxnð Þ ðB:7bÞ

where bbb; bbr; brr; brb; sb; sr; rb and rr are the calling the closure
variables, in the literature they have represented in terms of inte-
grals of associated Green’s functions (Wood and Valdés-Parada,
2013). The expressions in the Eq. (B.7), is consistent with previous
works for passive heat transfer in porous media (Quintard et al.,
20
1997; Dispersion in heterogeneous porous media: One-equation
non-equilibrium model, 2001; Aguilar-Madera et al., 2011). In this
case, the active heat transfer in porous media, given the influence
superficial chemical reaction source, is associated with the closure
variables rb and rsigma, which signs how this source is distributed
in the average temperature of the solid and fluid phases. This aspect
is appreciated in the last term in the macroscopic heat transfer
model, Eqs. (41) and (42), where the effective coefficients are corre-
lated with the average reaction term. The solution field of the clo-
sure variables is determined by solving the corresponding
boundary-value problems obtained by substituting Eqs. (B.7) into
Eqs. (B.6). These problems, indicating the associated source, can
be summarized as follows



Fig. B.3. (a) Convective coefficient i � ubb , (b) Convective coefficient i � urb , (c) Convective coefficient i � ubr , (d) i � urr;j ¼ 100 and eb ¼ 0:5.
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Problem : i ¼ 3;4;5;6 Source : 3 ¼ r Tb

� �b
;

4 ¼ r Trh ir;5 ¼ Tb

� �b � Trh ir; 6 ¼ qrxn

qcp
� �

b
vb � r/bi ¼ kbr2/bi � f bi; inthe b� phase

ðB:8aÞ

0 ¼ krr2/ri � f ri; inthe r� phase ðB:8bÞ
/bi ¼ /ri þ gI

i ; atAbr ðB:8cÞ
nbr � kbr/b ¼ nbr � krr/r þ gII

i ; atAbr ðB:8dÞ
Periodicity : /bi rð Þ ¼ /bi r þ lkð Þ;/ri rð Þ ¼ /ri r þ lkð Þ; k ¼ 1;2;3

ðB:8eÞ
Restriction : /bi

� �b ¼ /rih ir ¼ 0; ðB:8fÞ
where /ij (j ¼ b;r; i ¼ 3;4;5;6) represent the vectorial and scalar
fields according to

/j3 ¼ bjb;/j4 ¼ bjr;/j5 ¼ sj;/j6 ¼ rj; j ¼ b;r ðB:9Þ
where f mi in the Eqs. (B.8a) and (B.8b), is expressing as

f mi ¼ di1dmb qcp
� �

m
~vb þ e�1

m km �1ð Þdmr
VZ

Abr

nbr � r/midA;m ¼ b;r; i ¼ 1;2;3 ðB:10aÞ

gI
i ¼ di3; gII

i ¼ nbr �d1i þ d2ikrð Þ þ d4i; i ¼ 1;2;3 ðB:10bÞ
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Similar to previous closure problems related to momentum and
mass upscaling transport equations, Closure Problems 3,4,5 and 6
were solved in 2D and 3D unit cells with the simple geometrical
as sketched in Fig. A.1. It emphasizes that the geometry can be more
complex and include structural details of the catalysts. The expres-
sions of the effective coefficients, introduced in Eqs. (41) and (42),
can be summarized respectively with the closure variables as
follows

K
d�ib
ij ¼ ki eidijIþ �1ð Þdir

V

Z
Abr

nbrbijdA� dib qcp
� �

i
~v ibij
� �" #

ðB:11aÞ

u
d�ij
ij ¼ ai

V
�1ð Þdir

Z
Abr

nbr � rbijdAþ �1ð Þdij
"

Z
Abr

nbrsidA� dib �1ð Þdjb ~v isih i
#

ðB:11bÞ

avh ¼ ki
V

Z
Abr

nbr � rsidA ðB:11cÞ

ni ¼
ki

Abr

Z
Abr

nbr � rridA; nb þ nr ¼ 1 ðB:11dÞ
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in these equations i ¼ b; r; j ¼ b;r, while ai represents the thermal
diffusivity of the i- phase (i ¼ b;r). (See Figs. B.2 and B.3)
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